Home > Press > JPK Instruments’ NanoWizard provides valuable information about the Iceman for the Ludwig-Maximilians University in Munich and the European Academy in Bolzano
Marek Janko working with the JPK NanoWizard system at LMU in Munich |
Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the work of the Stark research group at LMU-Munich in cooperation with the EURAC Bolzano where a NanoWizard® AFM system has been used to reveal the nanostructure and mechanics of mummified type I collagen from the 5300-year-old Tyrolean Iceman.
Studying historical artifacts is always of interest and when the latest nanotechnology instrumentation is applied to the analysis of ancient materials, the interest rises to a higher level. In the Department of Earth and Environmental Sciences at the Ludwig-Maximilians University in Munich, scientists work on nanoscale biomaterial characterization. Their efforts have recently been showcased in the study of mummified skin from the 5300 year old Tyrolean Iceman. By way of background, skin protects the body from pathogens and degradation. Even mummified skin retains this function. The action of micro-organisms or other external influences may degrade the connective tissue and lay the subjacent tissue open. To determine the degree of tissue preservation in mummified human skin and the reason for its durability, PhD-student Marek Janko of Professor Robert Stark's research group has investigated the structural integrity of its main protein, type I collagen using an atomic force microscope, the NanoWizard® II, from JPK Instruments.
Janko's research focuses on the study of mechanical properties of nanobio materials. Use of AFM and Raman spectroscopy are non invasive techniques and samples may be re-analyzed many times. The choice of the NanoWizard for this work is two-fold. The combination of AFM with optical microscopy enables normal histology tissue samples, 2-4 microns thick and relatively "rough" to be readily studied in ambient conditions. The optical microscope enable identification of areas for study and then the AFM is used to effectively zoom in to study individual fibrils on the tens of nanometer scale. Being able to zoom to and study a single fibril just 30-40nm in height means the individual repeat units of 67nm may be identified and probed. This enables nanoindentation studies to be carried employing force-versus-distance measurements to measure mechanical properties and in particular, Young's modulus.
For further details of the products and applications from JPK, please visit the JPK web site (www.jpk.com).
####
About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. JPK was recognized as Germany’s fastest growing nanotechnology company in 2007 and 2008 (Deloitte). From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK) and Singapore, JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.
For further information, please contact JPK direct or their marketing partners, NetDyaLog, who will also provide high resolution images for your use.
For more information, please click here
Contacts:
Jezz Leckenby
NetDyaLog Limited
T: +44 (0) 1799 521881
M: +44 (0) 7843 012997
Petra Dammermann
JPK Instruments
T: +49 (0) 30 5331 12541
Copyright © JPK Instruments
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||