Home > Press > Revolutionising industrial catalysts
The crystal structure of the nanoporous crystal showing the ‘molecular wall-tie’ ligands (green) binding between the iron centres |
Abstract:
Scientists are a step closer to being able to prepare porous solids that can mimic the sophisticated chemistry found in nature thanks to new research involving Cardiff University.
Researchers from the University's School of Chemistry and the University of Manchester have succeeded in engineering crystals that are able to maintain their structure, providing a permanent porous matrix within which chemical reactions can take place. Their findings are published in the journal Science.
With this new porous crystal, made from an iron-containing compound called phthalocyanine, the group are looking to nature to maximise its potential within the field of industrial catalysts.
They are taking their initiative from enzymes - nature's catalysts that have a wide range of roles in biological environments, including speeding up chemical reactions within the human body. The research team are particularly interested in hemoproteins, a type of protein that is unusual in the diversity of tasks they are able to perform.
Lead author on the paper, Professor Neil McKeown, School of Chemistry, explains the significance of the group's achievement: "Normally the voids within nanoporous crystals of this type need to be filled with organic solvent and if this is removed they simply collapse losing their porosity and therefore the space in which to carry out chemical reactions. But by taking inspiration from the use of cavity wall-ties in architectural engineering, we have stabilised our crystals with the addition of suitable ligands, that can bind simultaneously to two iron atoms, thus acting as ‘molecular wall-ties."
The design of the new type of crystal is such that they can exist happily in water based environments and are accessible to gas molecules. This aspect makes them a contender for future industrial catalysts.
The group used the Science and Technology Facilities Council's Daresbury Laboratory and Diamond's Single Crystal Diffraction beamline I19 to understand whether it is possible to make porous crystals with the reactivity of hemoproteins in order to produce more effective man-made catalysts.
This research was funded by the Engineering and Physical Sciences Research Council (EPSRC). The full article ‘Heme-Like Coordination Chemistry Within Nanoporous Molecular Crystals' C. Grazia Bezzu, Madeleine Helliwell, John E. Warren, David R. Allan, Neil B. McKeown, is published in Science and available online here: www.sciencemag.org/cgi/content/abstract/327/5973/1627
####
About Cardiff University
Cardiff University is recognised in independent government assessments as one of Britain's leading teaching and research universities.
Founded by Royal Charter in 1883, the University today combines impressive modern facilities and a dynamic approach to teaching and research with its proud heritage of service and achievement.
For more information, please click here
Copyright © Cardiff University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||