Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Carnegie Mellon Scientists Create Toolbox Of Fluorescent Probes in a Rainbow of Colors

The above figure illustrates three populations of yeast cells labeled with green, orange and red fluoromodules expressed on the cell surface.
The above figure illustrates three populations of yeast cells labeled with green, orange and red fluoromodules expressed on the cell surface.

Abstract:
Scientists at Carnegie Mellon University's Department of Chemistry and Molecular Biosensor and Imaging Center (MBIC) are advancing the state-of-the-art in live cell fluorescent imaging by developing a new class of fluorescent probes that span the spectrum — from violet to the near-infrared.

Carnegie Mellon Scientists Create Toolbox Of Fluorescent Probes in a Rainbow of Colors

San Francisco, CA | Posted on March 26th, 2010

The new technology, called fluoromodules, can be used to monitor biological activities of individual proteins in living cells in real time. At the 239th national meeting of the American Chemical Society, Carnegie Mellon chemists and MBIC scientists will discuss recent advances in their fluoromodule technology that have produced diverse and photostable probes.

Fluoromodules, which consist of dye-protein complexes, provide alternatives to common fluorescent proteins, such as Green Fluorescent Protein (GFP), but with a wider selection of colors and the potential for significantly greater photostability, which allows scientists to image the dye for longer periods of time. This is made possible by the fact that the dye is noncovalently bound to the protein, which allows fresh dye to replace bleached dye.

"We initially isolated and characterized fluoromodules that generate fluorescence from the fluorogenic dyes thiazole orange and malachite green. We are now expanding our repertoire by synthesizing new dyes that emit in the orange and violet regions of the spectrum, and engineering proteins that bind to the new dyes with great affinity," said Chemistry Professor Bruce Armitage, co-director of the Center for Nucleic Acid Science and Technology at Carnegie Mellon and a member of the MBIC team developing the fluoromodules.

Fluoromodules are made of a fluorogen-activating protein (FAP) and a non-fluorescent dye called a fluorogen. The FAP, which is genetically expressed in a cell and tagged to a protein of interest, does not become fluorescent until it binds with its fluorogen. With the novel FAPs and associated fluorogens created by the MBIC team, the researchers can control when a target protein lights up, allowing them to track proteins on the cell surface and within living cells in very simple and direct ways, eliminating cumbersome experimental steps.

Recent advances in the MBIC fluoromodule technology being presented at the ACS meeting include:

> Working with a FAP that had a low affinity for the fluorogenic dye dimethlindole red (DIR), graduate student Hayriye Özhalici-Ünal used PCR mutagenesis to introduce mutations into the FAP's genetic sequence. A small number of mutations increased several-fold the protein's affinity for DIR, enabling very specific and selective binding of the FAP to its dye partner (DIR). Özhalici-Ünal will present this work at 9:50 a.m., Thursday, March 25 during the Follow-on Biologics: Protein Engineering session located in room 201 West Bldg. in the Moscone Center.

> Graduate student Nathaniel Shank synthesized a modified DIR, making it eight-times more photostable. This significant improvement could have an impact on single molecule imaging. Additionally, the modified DIR emits in the orange range of the spectrum, adding another color to the fluoromodule toolkit being developed at MBIC. Shank will present this work at 8 p.m., Tuesday, March 23 during the Total Synthesis of Complex Molecules, Material Devices & Switches, Physical Organic Chemistry poster session located in Hall D of the Moscone Center.

> By synthesizing a new dye and identifying FAPs that bind to it, research chemist Gloria Silva and graduate student Kim Zanotti developed a fluoromodule that emits fluorescence in the violet, which is a welcome addition to a very limited number of probes able to emit in the violet portion of the spectrum. Zanotti will present this work a 6 p.m., Tuesday, March 23 during the poster session located in room 3009/3011 West Bldg. in the Moscone Center.

The aforementioned work, funded by the Pennsylvania Department of Health and the National Institutes of Health (NIH), is part of the mission of the NIH National Technology Center for Networks and Pathways. The effort, headquartered at Carnegie Mellon, is a partnership between Carnegie Mellon and the University of Pittsburgh. For more information, visit www.mbic.cmu.edu/

####

For more information, please click here

Contacts:
Jocelyn Duffy
412-268-9982

Copyright © Carnegie Mellon University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project