Home > News > Nanotube RFID: Better Barcodes?
March 24th, 2010
Nanotube RFID: Better Barcodes?
Abstract:
Radio-frequency identification (RFID) tags have made paying toll fees and public transit fares a breeze. But the tags, which are made of silicon, are still too expensive to replace ubiquitous barcodes to similarly speed up grocery store checkout lines by remotely scanning a product while it's still in the basket.
Cheap plastic RFID tags could soon change that. Researchers in Sunchon, South Korea, have printed RFID circuits on plastic films using a combination of industrial methods: roll-to-roll printing, ink-jet printing, and silicone rubber-stamping. They use inks containing various materials--silver, carbon nanotubes, and a nanoparticle-polymer hybrid--to deposit the circuit's components, such as capacitors and transistors, layer by layer.
Gyoujin Cho, a professor of printed electronics engineering at Sunchon National University, who led the work, estimates that the tags cost three cents apiece. To replace barcodes, RFID tags will need to cost a penny or less. But Cho says this should be achievable if all the layers on a tag can be deposited with a roll-to-roll process. A version of the current prototype that is capable of holding useful amounts of data should be on the market later this year, he says.
Source:
technologyreview.com
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
RFID
Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017
Conformal transfer of graphene for reproducible device fabrication August 11th, 2015
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||