Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A More Sensitive Sensor

Abstract:
Tel Aviv University pioneers sensor technology for industry using nano-sized carbon tubes

A More Sensitive Sensor

Israel | Posted on March 23rd, 2010

Electro-mechanical sensors tell the airbag in your car to inflate and rotate your iPhone screen to match your position on the couch. Now a research group of Tel Aviv University's Faculty of Engineering is making the technology even more useful.

Prof. Yael Hanein, Dr. Slava Krylov and their doctoral student Assaf Ya`akobovitz have set out to make sensors for microelectromechanical systems (MEMS) significantly more sensitive and reliable than they are today. And they're shrinking their work to nano-size to do it.

More sensitive sensors means more thrilling videogames, better functioning prosthetic limbs, cars that can detect collisions and dangerous turns before they occur, and ¯ in the defense industry ¯ missiles that can reach a target far more precisely.

Miniscule earthquakes

Able to "feel" and sense the movement of individual atoms, the researchers' new MEMS sensing device uses small carbon tubes, nano in size ¯ about one-billionth of a meter long. Creating these tiny tubes using a process involving methane gas and a furnace, Prof. Hanein has developed a method whereby they arrange themselves on a surface of a silicon chip to accurately sense tiny movements and changes in gravity.

In the device developed by Prof. Hanein's and Dr. Krylov's team, a very tiny nanometer scale tube is added onto much larger micrometer-scale MEMS devices. Small deformities in the crystal structure of the tubes register a change in the movement of the nano object, and deliver the amplitude of the movement through an electrical impulse. "It's such a tiny thing," she says. "But at our resolution, we are able to feel the motion of objects as small as a few atoms."

"Originally developed mainly for the car industry, miniature sensors are all around us," says Prof. Hanein. "We've been able to fabricate a new device where the nano structures are put onto a big surface ¯ and they can be arranged in a process that doesn't require human intervention, so they're easier to manufacture. We can drive these nano-sensing tubes to wherever we need them to go, which could be very convenient and cost-effective across a broad spectrum of industries."

Until now, Prof. Hanein explains, the field of creating sensors for nanotechnology has been primarily based on manual operation requiring time-consuming techniques. Prof. Hanein and her team have developed a sensitive but abundant and cost-effective material that can be coated onto prosthetic limbs, inserted into new video games for more exciting play, and used by the auto industry to detect a potential collision before it becomes fatal.

The technology has been presented in a number of peer-reviewed journals including the Journal of Micromechanics and Micro-engineering; at a MEMS conference in Hong Kong; and at a nano conference in Tirol, Austria in March.

Markets in motion

The market for MEMS devices, which take mechanical signals and convert them into electrical impulses, is estimated to be worth billions. "The main challenge facing the industry today is to make these basic sensors a lot more sensitive, to recognize minute changes in motion and position. Obviously there is a huge interest from the military, which recognizes the navigation potential of such technologies, but there are also humanitarian and recreational uses that can come out of such military developments," Prof. Hanein stresses. More sensitive MEMS could play a role in guided surgery, for example.

The TAU team is working on optimizing the system, hoping to make it at least 100 times more sensitive than any sensor device on the market today.

####

About Tel Aviv University
Located in Israel's cultural, financial and industrial heartland, Tel Aviv University is the largest university in Israel and the biggest Jewish university in the world. It is a major center of teaching and research, comprising nine faculties, 106 departments, and 90 research institutes. Its origins go back to 1956, when three small education units - The Tel Aviv School of Law and Economics, an Institute of Natural Sciences, and an Institute of Jewish Studies - joined together to form the University of Tel Aviv.

For more information, please click here

Contacts:

Copyright © Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NEMS

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

One string to rule them all April 17th, 2018

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project