Home > Press > VCU Research Highlighted in Science Journal
Seven atom arsenic clusters are assembled into different architectures by using different counterions. By changing the counterion, the band gap of the material is changed despite being made from the same building block. Covalent linkers, as shown by gold linked assembly in the central panel allows additional control of the band gap. The arsenic atoms are red, the gold linkers are gold, and the counterions are purple for cesium and blue for potassium. Image courtesy of VCU/PSU/California Nanosystems Institute. |
Abstract:
Designing nanoscale materials with a precise control over properties
By Sathya Achia Abraham
Shiv Khanna, Ph.D., a professor in the VCU Department of Physics, together with colleagues from VCU, Penn State University and the California Nanosystems Institute, were recently highlighted in the Editor's Choice section of the journal Science for their work demonstrating how nanomaterials with control of specific properties can be created.
For the past decade, nanoscience has been a major scientific focus area globally, paving the way for the development of new materials for applications in the fields of energy, medicine, electronics, magnetics and chemistry.
Through theoretical and experimental work, the team found a way to make materials with variable band gaps. The band gap determines the nature of radiation that a material can absorb.
According to Khanna, using As73- as an atomic cluster of choice, the team synthesized nanoscale materials that combine As73- clusters with various alkali atoms that donate the charge to As7 clusters and consequently, result in different materials. Experimental measurements revealed that the band gaps vary from 1.1-2.1 eV, even though the assemblies are constructed from identical cluster building blocks.
The theoretical work at VCU revealed the nature of the electronic character of As73- clusters and further led to the understanding of how these variations are coming about.
"To our knowledge, this is the clearest demonstration of the potential of making materials with adjustable characteristics," said Khanna.
"Our research will open the pathway to materials with applications in energy needs, electronics and magnetic industries. We are also developing ideas for new catalysts that catalyze reactions and also perform other functions," Khanna said.
These findings were published in the January 2010 issue of the journal ACS-Nano - a publication of the American Chemical Society.
The work was supported by the Army Research Office through a MURI grant.
Khanna collaborated with VCU researchers Arthur C. Reber and Meichun Qian; Ayusman Sen, Ph.D., professor of chemistry at Penn State, and Penn State research associates Angel Ugrino, N.K. Chaki, and S. Mandal; and P. Weiss, Ph.D., director of the California Nanosytems Institute, and distinguished professor of chemistry and physics at Penn State, and H. M. Saavedra, a research associate at Penn State.
####
About Virginia Commonwealth University
Virginia Commonwealth University is a public, metropolitan, research university, supported by Virginia to serve the people of the state and the nation. The university provides a fertile and stimulating environment for learning, teaching, research, creative expression and public service. Essential to the life of the university is the faculty — actively engaged in scholarship and creative exploration activities that increase knowledge and understanding of the world and inspire and enrich teaching.
For more information, please click here
Contacts:
Sathya Achia Abraham
VCU Communications and Public Relations
(804) 827-0890
Copyright © Virginia Commonwealth University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||