Home > Press > 'Nano-foundry' technique yields ultra-durable probes from diamond
Abstract:
When a team of university and industry researchers tried a novel, foundry-style mold-filling technique to make nanoscale devices, they realized they had discovered a gem.
Not only did they pioneer a three-dimensional nanoscale fabrication method, they used the process to make ultra-hard, wear-resistant nanoprobes out of a material similar to diamond.
by Renee Meiller
On a larger scale, materials that look smooth still abrade because of slight irregularities and defects on their surfaces. However, at the nanoscale, atoms rub off one at a time, creating new challenges for researchers who build devices sometimes just tens of atoms wide.
"The effects of friction are important in nanoscale devices and processes, where surface forces such as friction are increasingly dominant due to the high surface-to-volume ratio," says Kumar Sridharan, a distinguished research professor of engineering physics at the University of Wisconsin-Madison and member of the research team.
The team, which also included researchers from the University of Pennsylvania and IBM Research-Zurich, published details of its research Jan. 31 in the advance online edition of Nature Nanotechnology.
The advance is key because it demonstrates a method for applying, in a three-dimensional nanoscale application, silicon-containing diamondlike carbon, or Si-DLC. In the study, the researchers showed that Si-DLC, which is prized for its low friction and high wear-resistance at the macroscale, also exhibits similar outstanding wear-resistance at the nanoscale.
"It was not clear that materials that are wear-resistant at the macroscale exhibit the same property at the nanoscale," says lead author Harish Bhaskaran, a former IBM researcher who now is a researcher in the Yale University Department of Electrical Engineering.
Developed by Sridharan, the new "nano foundry" technique easily could scale up for commercial manufacturing.
Using an IBM silicon-on-insulator wafer etched with sharp, pyramid-shaped "molds," Sridharan used Si-DLC to fabricate ultrasharp tips, with a 5 nanometer radius, on standard silicon microcantilevers.
Currently, manufacturers etch the tips out of silicon. However, for the new foundry-style method, Sridharan exploited plasma immersion ion implantation and deposition, a room-temperature process previously used for applying, or "depositing," coatings on implanting ions into other materials. "We've always deposited thin films on materials," he says. "We've looked at it as a two-dimensional surface-modification process."
In three dimensions, the technique works somewhat like the way in which a snowfall blankets the ground. In this case, the "snow" is ionized hexamethyl disiloxane, a liquid precursor to Si-DLC that gasifies in the plasma chamber and ultimately packs neatly into the molds on the IBM wafer. "Our process has allowed us to fill a very sharp tip, very accurately," says Sridharan.
Another advantage is that Si-DLC is an amorphous, rather than crystalline, material. If a crystal is too big, the mold will fill irregularly and limit the tip sharpness. However, an amorphous material can slide atom by atom into the mold, filling it completely, like raindrops into a bucket.
In addition to filling the tip molds completely, Si-DLC also coats the entire wafer. The researchers developed a simple, commercially feasible two-step silicon etching process to release the tip and the integrated cantilever from the wafer.
The tips have applications in atomic-force microscopy, data storage and nanofabrication. In wear tests, in which the researchers slid the tips continuously over a silicon dioxide surface for several days, they found the Si-DLC tips were 3,000 times more wear-resistant than silicon tips. "We've taken a material that's good at the macroscale, we fabricate it at the nanoscale, and we show it's wear-resistant at the nanoscale," says Bhaskaran.
Other authors on the Nature Nanotechnology paper include Bernd Gotsmann, Abu Sebastian, Ute Drechsler, Mark A. Lantz, Michel Despont, Papot Jaroenapibal, Robert W. Carpick, and Yun Chen.
####
For more information, please click here
Contacts:
Renee Meiller
(608) 262-2481
Kumar Sridharan
(608) 263-4789
Copyright © University of Wisconsin-Madison
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||