Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NETZSCH Introduces Upgraded Lab-sized Agitator Bead Mills

Abstract:
NETZSCH Fine Particle Technology introduces a new upgraded line of Mini and MicroSeries agitator bead mills for wet grinding of small batches. Ideal for laboratory and sample grinding, the Mini and MicroSeries mills accommodates different grinding chambers that vary in fabrication and size for specific applications. The mill can grind particles down to 10 to 20 nanometers in size.

NETZSCH Introduces Upgraded Lab-sized Agitator Bead Mills

Exton, PA | Posted on February 24th, 2010

The new design is more compact, and ancillary equipment is now mounted on the mill. Users can control cycle time, system alarms, measurement of motor power and data logging capability from a color touch screen mounted on the mill. The seal flush system and cooling water hoses are integrated directly into the machine frame. The pump is on a sliding platform, and can be moved into the equipment frame when out of use. In addition, the new line offers a remote mounted electrical enclosure, a larger mill motor, and pressure and temperature transmitters.

The complete line comprises three mills, each with grinding chamber parts fabricated with different materials for specific applications. For metal-free grinding, the MicroCer features chamber parts in wear-resistant zirconium oxide and is designed for solvent-based applications. The general-purpose use MicroFer is designed in stainless steel and has a cooled chamber. The MicroPur uses polyurethane parts for grinding water-based products.

Each mill in the MicroSeries line can be scaled up to the MiniSeries line to handle larger volumes. All three machines are equipped with Netzsch's proprietary ZETA® grinding system. The Mini and MicroSeries also feature an improved centrifugal separation system that employs grinding media from 0.05 to 1.5 mm in size, the smallest in the industry.

For more information about the Mini and MicroSeries, visit the NETZSCH Corporate Web site:

www.netzsch-grinding.com/en/products-solutions/laboratory-machines/wet-mills/microseries.html

####

About NETZSCH Fine Particle Technology
NETZSCH Fine Particle Technology, LLC (Exton, Pa.), an affiliated company of the Germany-based NETZSCH Feinmahltechnik GmbH, provides customized grinding, mixing, dispersing, kneading, deaeration, classifying, press and laboratory solutions for the paint and coating, pigment, pharmaceutical, food processing, ceramics, agricultural, minerals processing, cosmetics and R&D markets. More than 130 years of experience, targeted development and daily contact with customers, combined with process engineering know-how and an extensive machine and plant program, make NETZSCH one of the world’s leading suppliers. For more information, visit grinding-netzsch.com or call 484-879-2020.

For more information, please click here

Contacts:
Ashley Reppert
PR Consultant for NETZSCH
Schubert Communications, Inc.
610-269-2100, ext. 229

Copyright © NETZSCH Fine Particle Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project