Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Future in Two Words: Ionic Liquids

Abstract:
These molecular soups can be many things to many people in many different applications, including next-generation solar cells, hydrogen fuel cells, and lithium batteries. This may be what caught the eye of the U.S. Department of Energy (DOE), awarding Castner and his colleagues a grant for $2.4 million to delve into the nature of charge-transfer properties of ionic liquids. Previously, his Rutgers ionic liquids research was supported by the American Chemical Society's Petroleum Research Fund. In addition to the new DOE funding, the Rutgers ionic liquids fundamental research is also funded by the National Science Foundation.

The Future in Two Words: Ionic Liquids

New Brunswick, NJ | Posted on February 16th, 2010

Ionic liquids by definition contain ions - atoms positively or negatively charged because they have too few or too many electrons or some other imbalance in their charge. Even with this imbalance, these ions are stable and exist freely in a solution, not bound to any other atoms as they would be in neutral (uncharged) compounds.

Successful with the DOE proposal, Castner is now the lead principal investigator on a three-year DOE-funded program. With his four co-principal investigators from Penn State, University of Iowa, University of Minnesota, and Brookhaven National Laboratory, Castner and his Rutgers colleagues have assembled a top research team for investigating the properties of ionic liquids.

Batteries are a key energy technology, but they can only charge and discharge their electrical energy relatively slowly - think how long it can take a cell phone or computer battery to recharge. When the sun rises or sets on the Rutgers Solar Farm on the Livingston Campus, or when a hybrid car like a Toyota Prius uses regenerative braking technology, high performance capacitors are required.

New supercapacitors and ultracapacitors based on ionic liquid technology will do an even better job than the current technologies. Castner hopes to merge their basic science projects for understanding ionic liquids to help the Rutgers Energy Storage Research Group develop next-generation ultracapacitors and batteries.

Hydrogen fuel cells, a potential successor to conventional batteries, work best at temperatures well above the boiling point of water; evaporative losses can damage the device performance. Because ionic liquids almost never boil and are stable to high temperatures, fuel cells based on ionic liquids are expected to display enhanced performance.

####

About Rutgers University
Rutgers, The State University of New Jersey, is a leading national public research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to turning knowledge into solutions for local, national, and global communities.

As it was at our founding in 1766, the heart of our mission is preparing students to become productive members of society and good citizens of the world. Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate and postdoctoral; and continuing education for professional and personal advancement. Rutgers is New Jersey’s land-grant institution and one of the nation’s foremost research universities, and as such, we educate, make discoveries, serve as an engine of economic growth, and generate ideas for improving people’s lives.

For more information, please click here

Contacts:
Office of Media Relations
Alexander Johnston Hall
101 Somerset St. New Brunswick, NJ 08901-1281
732-932-7084

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project