Home > Press > Arrowhead's Portfolio Company, Nanotope, Publishes Preclinical Data Demonstrating Cartilage Regeneration
Abstract:
Arrowhead Research Corporation (NASDAQ: ARWR) today announced publication in Proceedings of the National Academy of Sciences (PNAS) of a study using Nanotope's lead compound for cartilage regeneration.
The study's authors, which include Nanotope co-founder Dr. Samuel Stupp, showed that Nanotope's bioactive nanofiber system promotes the growth of new cartilage in a rabbit model. The treatment is engineered to repair cartilage defects by working with an animal's own bone marrow stem cells to stimulate the production of new natural cartilage. This is an area of intense interest for the medical community because of the large number of joint injuries and, unlike bone, damaged cartilage does not naturally grow back in adults.
Nanotope's proprietary material was used in conjunction with microfracture, an established therapy whereby small holes are made in the bone beneath damaged cartilage in order to create a scar or clot. Nanotope's nanofiber gel was injected as a liquid into the microfracture holes where it self assembled to form a bioactive scaffolding that promotes the growth and integration of new natural cartilage. The procedure was performed both with and without the use of growth factors, and the study showed that Nanotope's material performed better than microfracture alone and that it did not require the expensive growth factors for positive results. The scaffolding leveraged the body's own stem cells and natural growth factor production to promote regeneration.
"We view these results as a significant step forward toward a potentially new and innovative way to treat cartilage injuries in the future," said Dr. Christopher Anzalone, CEO of Arrowhead. "More broadly, these data provide another important proof of concept for Nanotope's platform technology for regenerative medicine. With study results published in multiple peer reviewed scientific journals, the platform has demonstrated the ability to regenerate diverse tissues, from spinal cord to cartilage. It is our hope that Nanotope's technology may someday be used therapeutically to repair a wide range of tissue types damaged by traumatic injury, advanced age, or disease."
The article, entitled "Supramolecular Design of Self-assembling Nanofibers for Cartilage Regeneration" appeared in the February 2, 2010 issue of PNAS Online.
Safe Harbor Statement under the Private Securities Litigation Reform Act of 1995:
This news release contains forward-looking statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995. These statements are based upon our current expectations and speak only as of the date hereof. Our actual results may differ materially and adversely from those expressed in any forward-looking statements as a result of various factors and uncertainties, including the future success of our scientific studies, our ability to successfully develop products, rapid technological change in our markets, changes in demand for our future products, legislative, regulatory and competitive developments, the financial resources available to us, and general economic conditions. Arrowhead Research Corporation's most recent Annual Report on Form 10-K and subsequent Quarterly Reports on Form 10-Q discuss some of the important risk factors that may affect our business, results of operations and financial condition. We disclaim any intent to revise or update publicly any forward-looking statements for any reason.
####
About Arrowhead Research Corporation
Arrowhead Research Corporation (NASDAQ: ARWR) is a nanotechnology company commercializing new technologies in the areas of life sciences and electronics. Arrowhead is seeking to build value for shareholders through the progress of its portfolio companies. Currently, Arrowhead is focused primarily on its two majority owned subsidiaries, Unidym, a leader in carbon nanotube technology for electronic applications, and Calando, at the forefront of clinical application of RNAi delivery technology. Arrowhead also has minority investments in two privately held nanobiotech companies, including Nanotope, Inc.
For more information, please click here
Contacts:
Kristen McNally/Brandi Floberg
The Piacente Group, Inc.
212-481-2050
Copyright © Arrowhead Research Corporation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||