Home > Press > Unique glass microspheres show promise for medicine, energy
![]() |
Porous Walled Hollow Glass Microshere |
Abstract:
Networks of interconnected pores in the shells of the Savannah River National Laboratory's Porous Walled Hollow Glass Microspheres give the tiny "microballoons" unique capabilities for potential use in targeted drug delivery, hydrogen storage and other uses.
Hollow glass microspheres have been used for years in light-weight filler material, insulation, abrasives and other uses. The interconnected pores allow SRNL's unique, patent-pending microspheres to be filled with, hold, and release gases and other materials. Each porous walled hollow glass microsphere is about 50 microns in diameter, about half the width of a human hair. Its walls, which are about 10,000 angstroms thick (an angstrom is one-tenth of one-billionth of a meter) feature pores that range from 100 to 1,000 angstroms, which allow gases and other materials to enter the tiny spheres and be stored or cycled on absorbents inside.
DOE's SRNL originally developed the unique microspheres as a solid-state storage method for hydrogen; they have been successfully demonstrated to store and release the gas.
Work since then has shown potential in other uses, including battery applications and medicine. An article by authors from the Medical College of Georgia and SRNL, which has been accepted for publication in the peer-reviewed journal Nanomedicine: Nanotechnology, Biology and Medicine, discusses a possible application for the delivery of anti-cancer drugs.
A licensing agreement with specialty glass provider Mo-Sci Corporation will make the microspheres available for medical R&D and other applications, as well as providing SRNL with a cost-effective supply of the microspheres to continue research and development of additional applications.
Mo-Sci Corporation, a small business entity located in Rolla, Missouri, has been producing specialty glass materials since 1985. They currently produce glass materials to serve a variety of markets ranging from pharmaceutical to health care to space travel and automotive components. SRNL has long been recognized for its expertise in the science and engineering of glass. The laboratory developed the flowsheets and methods used in the Savannah River Site's facility for converting high-level radioactive waste into a stable glass form.
####
About Savannah River National Laboratory
The Savannah River National Laboratory (SRNL) is the applied research and development laboratory at the U.S. Department of Energy’s (DOE) Savannah River Site (SRS). The laboratory applies state-of-the-art science to provide practical, high-value, cost-effective solutions to complex technical problems.
The laboratory earns its world-class reputation because of its talented people and their unwavering commitment to safety, security and quality in the delivery of technology solutions that work.
For more information, please click here
Contacts:
Eric Frickey
803.725.0406,
Copyright © DOE Pulse
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |