Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unique glass microspheres show promise for medicine, energy

Porous Walled Hollow Glass Microshere
Porous Walled Hollow Glass Microshere

Abstract:
Networks of interconnected pores in the shells of the Savannah River National Laboratory's Porous Walled Hollow Glass Microspheres give the tiny "microballoons" unique capabilities for potential use in targeted drug delivery, hydrogen storage and other uses.

Unique glass microspheres show promise for medicine, energy

Aiken, SC | Posted on February 1st, 2010

Hollow glass microspheres have been used for years in light-weight filler material, insulation, abrasives and other uses. The interconnected pores allow SRNL's unique, patent-pending microspheres to be filled with, hold, and release gases and other materials. Each porous walled hollow glass microsphere is about 50 microns in diameter, about half the width of a human hair. Its walls, which are about 10,000 angstroms thick (an angstrom is one-tenth of one-billionth of a meter) feature pores that range from 100 to 1,000 angstroms, which allow gases and other materials to enter the tiny spheres and be stored or cycled on absorbents inside.

DOE's SRNL originally developed the unique microspheres as a solid-state storage method for hydrogen; they have been successfully demonstrated to store and release the gas.

Work since then has shown potential in other uses, including battery applications and medicine. An article by authors from the Medical College of Georgia and SRNL, which has been accepted for publication in the peer-reviewed journal Nanomedicine: Nanotechnology, Biology and Medicine, discusses a possible application for the delivery of anti-cancer drugs.

A licensing agreement with specialty glass provider Mo-Sci Corporation will make the microspheres available for medical R&D and other applications, as well as providing SRNL with a cost-effective supply of the microspheres to continue research and development of additional applications.

Mo-Sci Corporation, a small business entity located in Rolla, Missouri, has been producing specialty glass materials since 1985. They currently produce glass materials to serve a variety of markets ranging from pharmaceutical to health care to space travel and automotive components. SRNL has long been recognized for its expertise in the science and engineering of glass. The laboratory developed the flowsheets and methods used in the Savannah River Site's facility for converting high-level radioactive waste into a stable glass form.

####

About Savannah River National Laboratory
The Savannah River National Laboratory (SRNL) is the applied research and development laboratory at the U.S. Department of Energy’s (DOE) Savannah River Site (SRS). The laboratory applies state-of-the-art science to provide practical, high-value, cost-effective solutions to complex technical problems.

The laboratory earns its world-class reputation because of its talented people and their unwavering commitment to safety, security and quality in the delivery of technology solutions that work.

For more information, please click here

Contacts:
Eric Frickey
803.725.0406,

Copyright © DOE Pulse

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project