Home > Press > Nano-motors facilitate communication between brain cells
Dr Kittler's research is published in the 14 January issue of Neuron journal |
Abstract:
MRC-funded scientists led by Dr Josef Kittler (UCL Neuroscience) have identified how nano-sized motors in nerve cells help to regulate the balance of communication in the brain.
The findings may also help to explain why communication between nerve cells is disrupted in Huntington's disease, leading to altered electrical behaviour of nerve cells in this disease.
Nerve cells send signals to each other by releasing chemicals at specialized junctions between the cells called synapses. One key neurotransmitter, called GABA, acts on special proteins (GABA receptors) to generate inhibition, which stops the brain from becoming too excitable. In a paper published this week in the journal Neuron, Dr Kittler reveals how a protein named HAP1, working together with molecular motor proteins, helps to guide the GABA receptors to the synapses.
Alison Twelvetrees (UCL Neuroscience) first author on the study, said: "This work advances our understanding of how the GABA receptor proteins are delivered to synapses to control the level of inhibition in the brain. We show that the receptors are transported to synapses by small nanometer-sized motors, on intracellular protein tracks called microtubules".
In the inherited neurological disorder Huntington's disease, a mutation in the gene for the protein huntingtin leads to the production of a mutant huntingtin protein. This can disrupt several aspects of normal nerve cell function, including the function of the synapses. This altered function of synapses is likely to be an important contributor to the progression of the disorder.
Lead author Dr Josef Kittler said: "Our work shows how the transport of the GABA receptors to synapses is disrupted by the protein that is mutated in Huntington's disease, and adds another piece to the complex puzzle of how synaptic communication in the brain gets disrupted in this disorder".
The research is a good example of how understanding the way that tiny, but crucial, cell components such as synapses function contributes to understanding problems that affect whole body systems.
For more information about Dr Kittler's research, please visit his webpage:
www.ucl.ac.uk/npp/jk.html
####
About University College London
UCL was founded in 1826 as a radically different university, opening up English higher education for the first time to people of all beliefs and social backgrounds. That radical tradition remains alive today. Our research strategy commits us to addressing UCL's 'Grand Challenges', by working together right across the university in order to tackle the problems that face us today - in global health, sustainable cities, intercultural understanding, and human wellbeing. We believe in undertaking fundamental research and in applying it.
For more information, please click here
Copyright © University College London
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||