Home > Press > An organic transistor paves the way for new generations of neuro-inspired computers
![]() |
Abstract:
For the first time, CNRS and CEA researchers have developed a transistor that can mimic the main functionalities of a synapse.
This organic transistor, based on pentacene and gold nanoparticles and known as a NOMFET (Nanoparticle Organic Memory Field-Effect Transistor), has opened the way to new generations of neuro-inspired computers, capable of responding in a manner similar to the nervous system. The study is published in the 22 January 2010 issue of the journal Advanced Functional Materials ("An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse" *1)
In the development of new information processing strategies, one approach consists in mimicking the way biological systems such as neuron networks operate to produce electronic circuits with new features. In the nervous system, a synapse is the junction between two neurons, enabling the transmission of electric messages from one neuron to another and the adaptation of the message as a function of the nature of the incoming signal (plasticity). For example, if the synapse receives very closely packed pulses of incoming signals, it will transmit a more intense action potential. Conversely, if the pulses are spaced farther apart, the action potential will be weaker.
It is this plasticity that the researchers have succeeding in mimicking with the NOMFET.
A transistor, the basic building block of an electronic circuit, can be used as a simple switch - it can then transmit, or not, a signal - or instead offer numerous functionalities (amplification, modulation, encoding, etc.).
The innovation of the NOMFET resides in the original combination of an organic transistor and gold nanoparticles. These encapsulated nanoparticles, fixed in the channel of the transistor and coated with pentacene, have a memory effect that allows them to mimic the way a synapse works during the transmission of action potentials between two neurons. This property therefore makes the electronic component capable of evolving as a function of the system in which it is placed. Its performance is comparable to the seven CMOS transistors (at least) that have been needed until now to mimic this plasticity.
The devices produced have been optimized to nanometric sizes in order to be able to integrate them on a large scale. Neuro-inspired computers produced using this technology are capable of functions comparable to those of the human brain.
Unlike silicon computers, widely used in high performance computing, neuro-inspired computers can resolve much more complex problems, such as visual recognition.
(1) Full Paper
An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse
www3.interscience.wiley.com/journal/123215199/abstract?CRETRY=1&SRETRY=0
####
About CNRS
The Centre National de la Recherche Scientifique (National Center for Scientific Research) is a government-funded research organization, under the administrative authority of France's Ministry of Research.
For more information, please click here
Copyright © CNRS
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |