Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UAlbany NanoCollege Receives Nearly $4M in Federal Funding to Enable Nanoscale Education and Research

Abstract:
Grants support acquisition of specialized Atomic Force Microscope for nanobioscience research, as well as novel innovations for health care, clean energy, military, aerospace and automotive sectors

UAlbany NanoCollege Receives Nearly $4M in Federal Funding to Enable Nanoscale Education and Research

Albany, NY | Posted on January 13th, 2010

The College of Nanoscale Science and Engineering ("CNSE") of the University at Albany announced today that it has been selected to receive nearly $4 million in federal funding for a variety of educational and research initiatives that will support nanotechnology-enabled innovations across multiple sectors, from health care and clean energy to the military, aerospace and automotive industries.

The funding includes $610,000 received through the National Science Foundation's ("NSF") prestigious Major Research Instrumentation ("MRI") program for the acquisition of an Atomic Force Microscope ("AFM") that employs specialized Laser Scanning Confocal Microscopy ("LSCM"). This cutting-edge instrumentation - the first of its kind in upstate New York - provides the unique capability to deploy non-invasive, high-resolution optical imaging technology to obtain 3D images of biomolecules and other cellular structures, which is increasingly critical for biological research conducted at the nanoscale.

Dr. James Castracane, Professor and Head of CNSE's Nanobioscience Constellation, and Dr. Nathaniel Cady, CNSE Assistant Professor of Nanobioscience, will lead programs utilizing the AFM/LSCM to enable advanced cross-disciplinary research, including dynamic measurement of cell-surface and nucleic acid-protein interactions, mechanical studies of stem cell differentiation, and the elucidation of 3D tissue development. Additionally, the AFM/LSCM will serve as a flagship instrument for bridging research collaborations between CNSE and a variety of institutions, including the UAlbany Department of Biological Sciences and the New York State Health Department's Wadsworth Institute.

George M. Philip, President of the University at Albany, said, "These awards provide critical resources to enhance the world-class educational paradigm and unparalleled research infrastructure at the College of Nanoscale Science and Engineering. This funding further supports UAlbany's recognition as one of the world's leading research universities, and offers new and exciting opportunities for our students and faculty to compete and succeed in the innovation economy."

Dr. Alain E. Kaloyeros, Senior Vice President and Chief Executive Officer of CNSE, said, "The pioneering education and leading-edge research funded by these prestigious grants underscores the UAlbany NanoCollege's growing global recognition as a nexus for world-class nanoscale education and innovation, as well as the ability of nanotechnology to enable critical solutions that address real-world challenges. I congratulate Professors Castracane, Cady, Shahedipour-Sandvik, Lee, Huang and Efstathiadis on the receipt of these awards, and look forward to seeing the results of their research, which promises game-changing advances with important 21st century applications."

Dr. Shadi Shahedipour-Sandvik, CNSE Associate Professor of Nanoengineering, was awarded three federal grants for innovative nanoscale research initiatives: $450,000 through the U.S. Army Research, Development and Engineering Command ("RDECOM") to improve the operation and failure mechanisms in radio-frequency power devices to support a host of military applications; $400,000 through the NSF for an integrated educational and research program focusing on advanced optoelectronic materials, in partnership with Penn State University; and $400,000 through NASA's Jet Propulsion Laboratory for two programs to develop solid-state technologies that enable improved performance for advanced imaging systems, addressing one of NASA's major scientific priorities.

Dr. Ji Ung Lee, CNSE Empire Innovation Professor of Nanoscale Engineering, received federal funding to support two research initiatives: $525,000 through the U.S. Naval Research Laboratory ("NRL") to develop novel nanomaterials for advanced CMOS devices for use in military and space applications, and $300,000 through the U.S. Air Force Research Laboratory ("AFRL") to examine novel methods for growing carbon nanotube and graphene materials for a wide range of applications, including post-CMOS electronics, low-loss transmission lines, and the development of super-strength, lightweight composites.

Dr. Cady was awarded $700,000 through the AFRL to use nanomaterials to develop and deploy novel computer chip circuitries for memory storage and complex logic functions, such as neuromorphic computing, which uses silicon-based digital technologies to enable high-performance computing. The research will support a variety of defense-related applications, including improved radar detection, enhanced aircraft aerodynamics, and more effective simulations and modeling processes and systems for military readiness.

Dr. Mengbing Huang, CNSE Associate Professor of Nanoscience, was awarded $234,000 through the NSF for innovative research designed to develop and deploy improved sensors and monitoring systems for combustion processes that are used in a variety of industrial applications. His efforts will focus on the use of ion beam methods for fabricating robust optical waveguides within single-crystal sapphire fiber optics technology to address common challenges caused by high temperature, high pressure and highly reactive chemicals used in harsh environmental conditions.

Dr. Harry Efstathiadis, CNSE Associate Professor of Nanoengineering, received $100,000 through the U.S. Department of Energy ("DOE") to further research for the development of quantum well thermoelectric technologies for use in improving air conditioning systems for automobiles and trucks. The new technologies will produce cooling that is superior to current vapor compression systems, while reducing fuel consumption, eliminating environmentally harmful refrigerant gases, and enabling reductions in noise, vibration and overall vehicle maintenance costs.

####

About UAlbany
The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE's Albany NanoTech Complex is the most advanced research enterprise of its kind at any
university in the world. With over $5 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site at CNSE's Albany NanoTech, from companies including IBM, AMD, GlobalFoundries, SEMATECH, Toshiba, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech.

For more information, please click here

Contacts:
Steve Janack
CNSE Vice President for Marketing and Communications
518-956-7322

Copyright © UAlbany

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Environment

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Aerospace/Space

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project