Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UAlbany NanoCollege Receives Nearly $4M in Federal Funding to Enable Nanoscale Education and Research

Abstract:
Grants support acquisition of specialized Atomic Force Microscope for nanobioscience research, as well as novel innovations for health care, clean energy, military, aerospace and automotive sectors

UAlbany NanoCollege Receives Nearly $4M in Federal Funding to Enable Nanoscale Education and Research

Albany, NY | Posted on January 13th, 2010

The College of Nanoscale Science and Engineering ("CNSE") of the University at Albany announced today that it has been selected to receive nearly $4 million in federal funding for a variety of educational and research initiatives that will support nanotechnology-enabled innovations across multiple sectors, from health care and clean energy to the military, aerospace and automotive industries.

The funding includes $610,000 received through the National Science Foundation's ("NSF") prestigious Major Research Instrumentation ("MRI") program for the acquisition of an Atomic Force Microscope ("AFM") that employs specialized Laser Scanning Confocal Microscopy ("LSCM"). This cutting-edge instrumentation - the first of its kind in upstate New York - provides the unique capability to deploy non-invasive, high-resolution optical imaging technology to obtain 3D images of biomolecules and other cellular structures, which is increasingly critical for biological research conducted at the nanoscale.

Dr. James Castracane, Professor and Head of CNSE's Nanobioscience Constellation, and Dr. Nathaniel Cady, CNSE Assistant Professor of Nanobioscience, will lead programs utilizing the AFM/LSCM to enable advanced cross-disciplinary research, including dynamic measurement of cell-surface and nucleic acid-protein interactions, mechanical studies of stem cell differentiation, and the elucidation of 3D tissue development. Additionally, the AFM/LSCM will serve as a flagship instrument for bridging research collaborations between CNSE and a variety of institutions, including the UAlbany Department of Biological Sciences and the New York State Health Department's Wadsworth Institute.

George M. Philip, President of the University at Albany, said, "These awards provide critical resources to enhance the world-class educational paradigm and unparalleled research infrastructure at the College of Nanoscale Science and Engineering. This funding further supports UAlbany's recognition as one of the world's leading research universities, and offers new and exciting opportunities for our students and faculty to compete and succeed in the innovation economy."

Dr. Alain E. Kaloyeros, Senior Vice President and Chief Executive Officer of CNSE, said, "The pioneering education and leading-edge research funded by these prestigious grants underscores the UAlbany NanoCollege's growing global recognition as a nexus for world-class nanoscale education and innovation, as well as the ability of nanotechnology to enable critical solutions that address real-world challenges. I congratulate Professors Castracane, Cady, Shahedipour-Sandvik, Lee, Huang and Efstathiadis on the receipt of these awards, and look forward to seeing the results of their research, which promises game-changing advances with important 21st century applications."

Dr. Shadi Shahedipour-Sandvik, CNSE Associate Professor of Nanoengineering, was awarded three federal grants for innovative nanoscale research initiatives: $450,000 through the U.S. Army Research, Development and Engineering Command ("RDECOM") to improve the operation and failure mechanisms in radio-frequency power devices to support a host of military applications; $400,000 through the NSF for an integrated educational and research program focusing on advanced optoelectronic materials, in partnership with Penn State University; and $400,000 through NASA's Jet Propulsion Laboratory for two programs to develop solid-state technologies that enable improved performance for advanced imaging systems, addressing one of NASA's major scientific priorities.

Dr. Ji Ung Lee, CNSE Empire Innovation Professor of Nanoscale Engineering, received federal funding to support two research initiatives: $525,000 through the U.S. Naval Research Laboratory ("NRL") to develop novel nanomaterials for advanced CMOS devices for use in military and space applications, and $300,000 through the U.S. Air Force Research Laboratory ("AFRL") to examine novel methods for growing carbon nanotube and graphene materials for a wide range of applications, including post-CMOS electronics, low-loss transmission lines, and the development of super-strength, lightweight composites.

Dr. Cady was awarded $700,000 through the AFRL to use nanomaterials to develop and deploy novel computer chip circuitries for memory storage and complex logic functions, such as neuromorphic computing, which uses silicon-based digital technologies to enable high-performance computing. The research will support a variety of defense-related applications, including improved radar detection, enhanced aircraft aerodynamics, and more effective simulations and modeling processes and systems for military readiness.

Dr. Mengbing Huang, CNSE Associate Professor of Nanoscience, was awarded $234,000 through the NSF for innovative research designed to develop and deploy improved sensors and monitoring systems for combustion processes that are used in a variety of industrial applications. His efforts will focus on the use of ion beam methods for fabricating robust optical waveguides within single-crystal sapphire fiber optics technology to address common challenges caused by high temperature, high pressure and highly reactive chemicals used in harsh environmental conditions.

Dr. Harry Efstathiadis, CNSE Associate Professor of Nanoengineering, received $100,000 through the U.S. Department of Energy ("DOE") to further research for the development of quantum well thermoelectric technologies for use in improving air conditioning systems for automobiles and trucks. The new technologies will produce cooling that is superior to current vapor compression systems, while reducing fuel consumption, eliminating environmentally harmful refrigerant gases, and enabling reductions in noise, vibration and overall vehicle maintenance costs.

####

About UAlbany
The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE's Albany NanoTech Complex is the most advanced research enterprise of its kind at any
university in the world. With over $5 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site at CNSE's Albany NanoTech, from companies including IBM, AMD, GlobalFoundries, SEMATECH, Toshiba, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech.

For more information, please click here

Contacts:
Steve Janack
CNSE Vice President for Marketing and Communications
518-956-7322

Copyright © UAlbany

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project