Home > News > Needling Molecules
January 12th, 2010
Needling Molecules
Abstract:
Many experiments in biology rely on manipulating cells: adding a gene, protein, or other molecule, for instance, to study its effects on the cell. But getting a molecule into a cell is much like breaking into a fortress; it often relies on biological tricks such as infecting a cell with a virus or attaching a protein to another one that will sneak it through the cell's membrane. Many of these methods are specific to certain types of cells and only work with specific molecules. A paper in this week's Proceedings of the National Academy of Sciences offers a surprisingly simple and direct alternative: using nanowires as needles to poke molecules into cells.
Author Hongkun Park, a professor of chemistry and physics at Harvard University, says that, in theory, "you can put more or less any molecule in more of less any kind of cell." If the method proves effective, it could greatly speed the ability to manipulate cells in a variety of applications, including stem-cell reprogramming and drug screening.
Source:
technologyreview.com
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |