Home > News > MIND over matter
January 11th, 2010
MIND over matter
Abstract:
The current technology that powers modern day electronics — the complementary metal oxide semiconductor (CMOS) switch — is about to hit a wall.
That's the assessment of nanoelectronics experts around the globe, including researchers right here in South Bend, at the University of Notre Dame's Center for Nano Science and Technology (NDnano) and the Midwest Institute for Nanolectronics Discovery (MIND).
One promising technology uses electron tunneling, a phenomenon of quantum mechanics, which describes the transfer of electrons across energy barriers. As Porod explains, electron tunneling allows engineers to better control the flow of electrons across much shorter distances than in a current microprocessor chip, turning them "on" and "off" as needed, and with less power, so that they are more efficient.
In Seabaugh's laboratory, researchers are constructing tunneling transistors, devices in which quantum-mechanical tunneling is controlled electronically. The transistor itself is made from a stack of materials, where all of the thicknesses are measured in nanometers, consisting of semiconductors, oxides and metals. The challenge for Seabaugh and his colleagues is to manipulate the thickness of the barrier to better control electron flow.
Source:
southbendtribune.com
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Quantum Computing
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |