Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA's California NanoSystems Institute welcomes new start-up to incubator space

Abstract:
Aneeve to develop sensors to monitor hormone levels for menopause, fertility

UCLA's California NanoSystems Institute welcomes new start-up to incubator space

Los Angeles, CA | Posted on January 8th, 2010

Aneeve Nanotechnologies LLC has been selected to work in the UCLA on-campus Technology Incubator Program at the California NanoSystems Institute. The startup company will conduct early-stage research for the development of a novel hormone sensor/meter for biomedical applications in the areas of infertility and menopause.

Aneeve has licensed related carbon nanotube technology from UCLA developed by Kang Wang, a UCLA professor of electrical engineering. The technology increases hormonal detection sensitivity significantly, allowing detection beyond traditional sensors. The company is using this technology to develop biomedical applications that are low in power consumption and small in size and that involve ultra-sensitive nanoelectronic technologies.

Aneeve's primary research focus within the incubator will be to develop a consumer-based, simple-to-use meter for sensing estrogen and progesterone hormone levels to assist women in mitigating unwanted symptoms of menopause. The meter will provide on-demand hormonal levels so patients can better control drug intake related to hormone therapy. The system is intended to be low cost, compact and easy to use. Currently, there is no such meter commercially available.

The sensor and transducer technology will measure hormone concentrations using specially made hormone tabs — similar to the glucose tabs used by diabetics — made by low-cost and precise ink-jet printing of carbon nanotubes. Additionally, the device will allow couples to monitor hormone patterns to help increase chances of fertility, especially among those seeking infertility treatments.

Aneeve's scientific advisory committee includes Kang Wang, who holds the Raytheon Chair in Physical Science at UCLA and is a University of California Distinguished Professor in Electrical Engineering; Wang is a pioneering scientist and technologist who brings vast experience in charge-based nanodevices. The committee also includes University of Southern California professor Chongwu Zhou, who holds joint appointments within the USC College departments of physics and chemistry and has extensive experience in carbon nanotube fabrication, devices and carbon nanotube-on-insulator technology.

"After speaking with medical experts at UCLA and USC, our research collaborators recognized a real need for a simple non-invasive device," said Wang, upon whose technology the license is based. "Such consumer-based meters for on-demand sensing of estrogen and progesterone concentrations are not currently available."

As a startup in the UCLA incubator, Aneeve will benefit from close access to the core facilities within CNSI. In developing the hormone sensor, the company plans to make extensive use of such labs as the Center for Quantum Research, the Nano and Pico Characterization lab, the Electron Imaging Center for Nanomachines, the Integrated Nanomaterials Lab and the Integrated Systems Nanofabrication Cleanroom.

"Aneeve's proof-of-concept work will be greatly aided by access to cutting-edge lab equipment and technical expertise at the incubator," Zhou said. "This will propel the research and development efforts significantly and help Aneeve to get to market that much faster."

Aneeve is currently funded via the Defense Advanced Research Projects Agency (DARPA) with Small Business Innovation Research awards totaling more than $900,000.

####

About California NanoSystems Institute
The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more information, please click here

Contacts:
Jennifer Marcus

310-267-4839

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project