Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel Nanotechnology Heals Abscesses Caused by Resistant Staph Bacteria

Abscesses in mice that received placebo, nanoparticle alone or
nanoparticle with nitric oxide for 4 days after MRSA abscess formation.
The inset in the untreated group shows what the contents of the MRSA
abscess look like at this time.
Abscesses in mice that received placebo, nanoparticle alone or nanoparticle with nitric oxide for 4 days after MRSA abscess formation. The inset in the untreated group shows what the contents of the MRSA abscess look like at this time.

Abstract:
Researchers at Albert Einstein College of Medicine of Yeshiva University have developed a new approach for treating and healing skin abscesses caused by bacteria resistant to most antibiotics. The study appears in the journal PLoS One.

Novel Nanotechnology Heals Abscesses Caused by Resistant Staph Bacteria

Bronx, NY | Posted on December 23rd, 2009

Abscesses are deep skin infections that often resist antibiotics and may require surgical drainage. For their new treatment strategy, the Einstein scientists developed tiny nanoparticles — smaller than a grain of pollen — that carry nitric oxide (NO), a gas that helps in the body's natural immune response to infection.

When topically applied to abscesses in mice, the particles released NO that traveled deep into the skin, clearing up the infections and helping to heal tissue.

"Our work shows that nitric oxide-releasing nanoparticles developed here at Einstein can effectively treat experimental skin abscesses caused by antibiotic-resistant Staphylococcus aureus, even without surgical drainage," says Joshua D. Nosanchuk, M.D., senior author of the study and associate professor of medicine and of microbiology & immunology.

"This is important," he notes, "because several million people are treated for staph infections every year in the U.S. Increasingly, these infections are caused by methicillin-resistant Staph aureus — or MRSA — the serious and potentially fatal "superbug" that we tackled in this study."

According to the Centers for Disease Control and Prevention, approximately 94,000 cases of invasive MRSA infections occur each year, resulting in 19,000 deaths. In a 2006 study involving multiple emergency rooms across the U.S., MRSA was isolated from 61 percent of abscesses.

"To have a topical medication for staph infections instead of one that you have to take orally and systemically would revolutionize the way we take care of our patients," Dr. Nosanchuk adds.

In research published earlier this year in the Journal of Investigative Dermatology, the interdisciplinary Einstein team showed that NO-containing nanoparticles could clear up superficial skin infections caused by MRSA. The current study of abscesses was designed to learn whether the nanoparticles could combat infections deep in the skin.

The researchers experimentally induced MRSA abscesses in 60 mice. The abscesses were either left untreated, topically treated with "empty" nanoparticles, or topically treated with nanoparticles containing NO and were evaluated four days later.

The microbial concentration in the abscesses of mice treated with NO-containing nanoparticles was significantly reduced compared with abscesses in the other two groups. In addition, the abscesses of mice treated with NO-containing nanoparticles had undergone much more healing, as shown by their improved appearance and by the far greater amounts of collagen (a protein important in maintaining the structure of skin) deposited within them.

The Einstein nanoparticle technology was developed by Joel M. Friedman, M.D., Ph.D., the Young Men's Division Chair of Physiology and professor of physiology & biophysics and of medicine, and Adam Friedman, M.D., currently the chief resident in the division of dermatology of the department of medicine at Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein.

When introduced on the skin or into the body, the tiny nanoparticles absorb water, swell up, and start releasing their cargo in a sustained manner. The nanoparticles can carry and release a variety of drugs as well as chemicals, including NO.

Produced naturally by cells throughout the body, NO has important biological properties including killing bacteria, healing wounds, and increasing blood flow by dilating blood vessels. "But NO is a very short-lived gas," notes Dr. Joel Friedman, "and, until now, methods to deliver it to targeted tissues in the proper doses have proven elusive."

Einstein researchers are also pursuing other potential therapeutic uses for their nanoparticles. For example, along with Kelvin Davies, Ph.D., associate professor of urology, the Friedmans recently showed that nanoparticles loaded with either NO or tadalafil (Cialis) show promise as a topical cream-like treatment for erectile dysfunction.

Earlier this month, Makefield Therapeutics, Inc., a biotechnology company based in Newtown, PA, licensed patent rights to Einstein's NO-containing nanoparticle technology. The company plans to use topical formulations of the NO-containing nanoparticles to treat antibiotic-resistant infections and erectile dysfunction.

The paper, "Nitric Oxide Releasing Nanoparticles Are Therapeutic for Staphylococcus aureus Abscesses in a Murine Model of Infection," was published in the November 12, 2009 issue of PLoS ONE.

Other Einstein authors of the study are George Han, an M.D.-Ph.D. candidate, Luis R. Martinez, Ph.D., and Mircea Radu Mihu, M.D.

####

About Albert Einstein College of Medicine of Yeshiva University
The Albert Einstein College of Medicine is one of the nation’s premier institutions for medical education, basic research and clinical investigation.

It is home to 2,775 faculty members, 625 M.D. students, 225 Ph.D. students attending the Sue Golding Graduate Division, 125 students in the combined M.D./Ph.D. program, and 380 postdoctoral research fellows at our Belfer Institute for Advanced Biomedical Studies. More than 8,000 Einstein alumni are among the nation’s foremost clinicians, biomedical scientists, and medical educators.

For more information, please click here

Contacts:
Deirdre Branley
718-430-3101

Copyright © Albert Einstein College of Medicine of Yeshiva University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project