Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Nanopore Technique Facilitates Faster, Cheaper Genome Analyses

Schematic of a solid state nanopore used for genome analyses (not to scale). The electrostatic potential near an approximately five nanometer-wide, solid-state nanopore attracts negatively-charged, double-stranded DNA molecules into the pore, which electronically detects the molecules as they traverse the pore. (Photo courtesy of Nature Nanotechnology.)
Schematic of a solid state nanopore used for genome analyses (not to scale). The electrostatic potential near an approximately five nanometer-wide, solid-state nanopore attracts negatively-charged, double-stranded DNA molecules into the pore, which electronically detects the molecules as they traverse the pore. (Photo courtesy of Nature Nanotechnology.)

Abstract:
Ultra-fast, low-cost genomic sequencing and profiling may some day accelerate the pace of biological discovery and enable clinicians to quickly and precisely diagnose patients' susceptibility to disease and tolerance of selected drugs. But this scenario may not be realized until engineers find a way to considerably increase the sensitivity of sensors used to detect the DNA molecules that define the human genome.

New Nanopore Technique Facilitates Faster, Cheaper Genome Analyses

Boston, MA | Posted on December 21st, 2009

It's a feat that could be achieved by reducing the number of target DNA molecule copies needed to obtain an accurate read. And that presents a formidable challenge: to produce sufficient copies to decipher the genome using current technology, most scientists still rely on time-consuming, expensive, and error-prone DNA replication tools such as the polymerase chain reaction (PCR).

Now researchers have devised a method that advances the prospects for efficiently analyzing DNA samples without amplification. In a study published in the Dec. 20 online edition of Nature Nanotechnology, Associate Professor Amit Meller (BME, Physics), BME postdoctoral fellow Meni Wanunu, BU physics student Will Morrison and collaborators at New York University and Bar-Ilan University demonstrated a method to tune solid-state nanopores — tiny, nearly cylindrical, silicon nitride sensors that electronically detect DNA molecules as they pass through the pore — to require far fewer DNA molecules than ever before.

"This study shows that using our method, we can detect a much smaller amount of DNA than previously published," said Meller. "When people will start to implement genome sequencing or profiling using nanopores, they could use our nanopore capture approach to greatly reduce the number of copies used in those measurements."

Nanopore capture consists of two distinct steps: the arrival of a sample molecule to the pore mouth, and the threading of the end of that molecule into the pore. To significantly increase the rate at which nanopores capture incoming, two nanometer-wide DNA molecules, Meller and his colleagues used salt gradients to alter the electric field in the pore's vicinity. This achieved a funneling effect that directed charged DNA molecules toward the mouth of the pore and boosted the molecules' arrival and threading rates.

By upping the capture rate by a few orders of magnitude and decreasing the volume of the sample receiving chamber, the researchers reduced the number of DNA molecule copies required for nanopore-based detection by a factor of 10,000 — from about one billion sample molecules to 100,000. They also demonstrated that longer DNA molecules (containing tens of thousands of nucleotide base pairs) increased the capture rate even further.

"PCR and other DNA replication technologies limit DNA molecule length," said Meller. "Because our method avoids amplification, it not only reduces the cost, time and error rate of DNA replication techniques, but also enables the analysis of very long strands of DNA."

Funded by the National Institutes of Health and the National Science Foundation, the research team set out to achieve a better understanding of the physical forces that govern the DNA capture process. They arrived at their findings by using high-end transmission electron microscopes (TEM) to fabricate hundreds of nanopores with atomic-scale precision, and testing differently configured salt gradients near the pores.

"We had to perform extensive studies with these nearly atomic-scale pores in order to reveal how the electrostatic potential, which extends at least hundreds of nanometers away from the pore, focuses DNA into and through the pore," said Meller.

To conduct further investigations of unamplified genomes, Meller is now exploring other technologies, including optical detection and force measurements, for reading single DNA molecules as they pass through nanopores.

####

About Boston University
Boston University is one of the leading private research and teaching institutions in the world today, with two primary campuses in the heart of Boston and programs around the world.

For more information, please click here

Copyright © Boston University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project