Home > Press > Switchable Nanostructures Made with DNA
Using DNA to assemble nanoclusters: (a) (1) DNA linker strands (squiggly lines) are used to attach DNA-coated nanoparticles to a surface. (2) Linker strands are attached to the top side of the nanoparticle. (b) (3a) A nanoparticle of a second type with complementary DNA encoding recognizes the exposed linker strands and attaches to the surface-anchored nanoparticle. (4a and 5a) The assembled structure is released from the surface support, resulting in a two-particle, dimer cluster. (c) (3b) Alternatively, the immobilized particles produced in step (a) are released from the surface, leaving the opposite-side linker strands free to bind with multiple particles (4b) to form asymmetric "Janus" clusters. |
Abstract:
Opens possibility of responsive 'nanomachines' for applications in energy and data storage
Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have found a new way to use a synthetic form of DNA to control the assembly of nanoparticles - this time resulting in switchable, three-dimensional and small-cluster structures that might be useful, for example, as biosensors, in solar cells, and as new materials for data storage. The work is described in Nature Nanotechnology, published online December 20, 2009.
The Brookhaven team, led by physicist Oleg Gang, has been refining techniques to use strands of artificial DNA as a highly specific kind of Velcro or glue to link up nanoparticles [see: www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=921]. Such DNA-based self-assembly holds promise for the rational design of a range of new materials for applications in molecular separation, electronics, energy conversion, and other fields. But none of these structures has had the ability to change in a programmable manner in response to molecular stimuli - until now.
"Now we're using a special type of DNA-linking device - a kind of 'smart glue' - that affects how the particles connect to make structures that are switchable between different configurations," says Gang. This reliable, reversible switching could be used to regulate functional properties - for example, a material's fluorescence and energy transfer properties - to make new materials that are responsive to changing conditions, or to alter their functions on demand.
Such responsiveness to changes in environmental conditions and the ability to adopt new forms are hallmarks of living systems. In that way, these new nanomaterials more closely mimic biological systems than any previous nanostructures. Though far from any form of truly "artificial life," these materials could lead to the design of nanoscale machines that, at a very simple level, mimic cellular processes such as converting sunlight into useful energy, or sensing the presence of other molecules. Responsive materials would also have benefits in the field of optics or to produce regulated porous materials for molecular separations, Gang says.
The scientists achieved the goal of responsiveness by creating structures where the distance between nanoparticles could be carefully controlled with nanometer accuracy.
"Many physical characteristics of nanomaterials, such as optical and magnetic properties, are strongly dependent on the distance between nanoparticles," Gang explains.
In their previous studies, the scientists used single strands of DNA attached to individual nanoparticles as linker molecules. When the free ends of these DNA strands had complementary genetic code, they would bind to attach the particles. Constraining the interactions by anchoring some of the particles on a surface allowed the scientists to reliably form a variety of structures from two-particle clusters (called dimers) to more complex 3-D nanoparticle crystals.
In the new work, the scientists have added more complicated, double-stranded DNA structures. Unlike the single strands, which coil in uncontrollable ways, these double-stranded structures are more rigid and therefore constrain the interparticle distances.
Additionally, some of the strands making up the double-stranded DNA molecules have complicated structures such as loops, which pull the bound particles closer together than when both strands are exactly parallel. By varying the type of DNA device, between looped and unlooped strands, and measuring the interparticle distances using precision techniques at Brookhaven's National Synchrotron Light Source (NSLS) and at the Center for Functional Nanomaterials (CFN), the scientists demonstrated that they could effectively control the distance between the particles and switch the system from one state to another at will.
The approach resulted in two-configuration, switchable systems both in dimers and nanocrystals, with a distance change of about 6 nanometers - about 25 percent of the interparticle distance. By comparing kinetics in the two systems, they found that the switching between states is faster in the simpler, two-particle system. The dimers also retain their ability to return to their initial state more precisely than the 3-D crystals, suggesting that molecular crowding may be an issue to further investigate in the 3-D materials.
"Our hope is that the ability to induce post-assembly reorganization of these structures by adding DNA or other molecules as external stimuli, and our ability to observe these changes with nanometer resolution, will help us understand these processes and find ways to apply them in new kinds of nanomachinery in which the system's functionality is determined by the nanoparticles and their relative organization," says Gang.
Future studies will make use of precise imaging capabilities, such as advanced electron microscopy tools at the CFN and higher-resolution x-ray techniques that will become available at Brookhaven's new light source, NSLS-II, now under construction.
Gang's collaborators on this work include Brookhaven colleagues Mudalige Kumara, Dmytro Nykypanchuk and William Sherman, as well as Mathew Maye, a former Brookhaven chemist now at Syracuse University. The research was funded by the DOE Office of Science, by a Laboratory Directed Research and Development grant, and by a Goldhaber Distinguished Fellowship. Brookhaven Science Associates, which manages Brookhaven Lab, has filed patent applications related to this work. For information about these patents and licensing opportunities, contact Kimberley Elcess, 631 344-4151.
Upon publication, the paper will be available at: dx.doi.org/10.1038/NNANO.2009.378.
Related Links
* DNA-Based Assembly Line for Precision Nano-Cluster Construction:
www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=921
* DNA Technique Yields 3-D Crystalline Organization of Nanoparticles:
www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=07-127
* New DNA-Based Technique For Assembly of Nano- and Micro-sized Particles:
www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=07-94
* Nanoparticle Assembly Enters the Fast Lane:
www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=06-112
####
About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOEs Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (www.bnl.gov/newsroom), or follow Brookhaven Lab on Twitter (twitter.com/BrookhavenLab).
About the Center for Functional Nanomaterials
The Center for Functional Nanomaterials at Brookhaven National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.
For more information, please click here
Contacts:
Karen McNulty Walsh
(631) 344-8350
Mona Rowe
(631) 344-5056
Copyright © Brookhaven National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Synthetic Biology
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||