MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Angstron Awarded $1.494 Million In Funding From National Institute Of Standards And Technology

Abstract:
Angstron Materials Inc., a world leader in the production of nano graphene platelets (NGPs), has been awarded 1.494 million to develop processes for mass-producing chemically modified ("functionalized") NGPs for a nearly limitless number of applications in the aerospace, energy, defense, automotive and telecommunications markets.

Angstron Awarded $1.494 Million In Funding From National Institute Of Standards And Technology

Dayton, OH | Posted on December 18th, 2009

Angstron was selected for the award by the U.S. Commerce Department's National Institute of Standards and Technology (NIST). Part of NIST's Technology Innovation Program (TIP), the award will be matched by other funding sources.

The award will generate more high-tech jobs for Dayton and position Angstron as a commercialization leader for breakthrough NGP-based products with its patented technology and manufacturing processes. TIP selected Angstron based on its capability to accelerate development of nano graphene, an advanced material considered critical to potential growth in U.S. manufacturing. "We'll also be able to help industries that currently need and use carbon nanotubes, but would benefit from higher performance and a lower cost," said Dr. Bor Jang, CEO and Co-Founder of Angstron.

Angstron developed NGPs as an alternative to carbon nanotubes, which are difficult to disperse in plastic and often have purity issues—not to mention the cost factor. NGPs have been shown to have striking material properties; among other things, it has the highest intrinsic strength and the highest thermal conductivity of all existing materials as well as exceptional in-plane electrical conductivity (up to ~ 20,000 S/cm)and electron mobility that is 100 times faster than silicon.

The ability to chemically functionalize these NGPs in a continuous, cost-effective manner is the
next step to broad implementation of this high performing material. "We are actively looking for partners interested in jointly developing methods to incorporate NGPs into products that require critical performance features and could provide a competitive advantage in today's global market," said Jang.

Application examples include the ability to use NGPs in aviation against lightening strikes or in fuel tanks. The material can be modified to become semi-conducting or insulated when needed. Angstron's work supports other aerospace needs such as integration of NGPs in thin films or coatings for EMI shielding, electrostatic spray painting, and conductive adhesives as well as composites and thermal management applications. Work is also underway to integrate NGPs in several energy storage and conversion products, such as high-capacity lithium-ion batteries, high-capacity supercapacitors, fuel cells, wind turbine blades, lubricants and solar cells.

Angstron's project goals under the award will focus on two primary objectives The advanced materials company will develop methods for mass-producing functionalized NGPs through the development of scalable surface treatment procedures for both pristine graphene and graphene oxide platelets. Angstron will also develop an in-depth understanding of the relationships between processing, shape and structure changes and performance in NGPs and NGP-containing devices or composites for both functional and load-bearing applications.

####

About Angstron Materials
Angstron Materials leads the industry as the only advanced materials company to offer large quantities of graphene as well as pristine and oxidized multi-layer graphene. Multi-layer graphene, both pristine and oxidized versions, are collectively referred to as nano graphene platelets (NGPs). NGPs offer improved performance properties including very high Young’s modulus, strength and surface area, superior thermal and electrical conductivity, lower density and less weight. NGPs are also resistant to gas permeation. As a result, Angstron is able to work with companies to develop products for batteries, fuel cells, supercapacitors, light weight structural components as well as electromagnetic interference (EMI), radio frequency interference (RFI), electrostatic discharge (ESD), lightning strike and other functional and structural composite applications. In addition to its ability to provide sample materials and scale-up, Angstron partners with customers to help manufacturers identify optimal designs, experience with research and development to help manufacturers harness the advantages of nano compositions and manufacturing processes. Available in a wide range of geometries, NGP products are easily surface functionalizable for polymer and common solvent applications and offer high loading potential for nanocomposite applications.

Angstron combines real world technology to make next generation products in the aerospace, automotive, energy, marine, construction, electronics, medical, and telecommunications markets.

For more information, please click here

Contacts:
Ron Beech
Director of Marketing & Sales
Phone: 937-672-7100
ron.beech@angstronmaterials.com

Copyright © Angstron Materials

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Jobs

Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline August 11th, 2020

March 17th, 2020

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) March 29th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Automotive/Transportation

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Aerospace/Space

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project