Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Heal Thyself

Self-healing polymers could provide biocompatible coatings for hip joints and other internal prostheses
Self-healing polymers could provide biocompatible coatings for hip joints and other internal prostheses

Abstract:
Researchers develop 'self-healing' polymers at the nanoscale

Heal Thyself

Oak Ridge, TN | Posted on November 14th, 2009

Imagine a hip replacement covered with a nanometers-thin biocompatible layer on its outer surface, where it contacts the body, while the rest of it is designed with the strength to cope with any stress the body might deliver.

One could also imagine a multi-layered coating for a doorknob. The outer layer is designed to be microbially resistant, while the remaining layer contains properties that adhere to the doorknob. When an individual with a cold touches the doorknob, the anti-microbial agents immediately kill the bacteria before they can spread. Meanwhile, the adhesive properties keep the coating in place.

A collaboration of polymer scientists at ORNL is using the Liquids Reflectometer at the Spallation Neutron Source to study the dynamics of polymer mixtures. The mixtures comprise repeating large molecules connected by covalent chemical bonds that hold promise for applications as diverse as biocompatible films for human implants; semiconductors; substrates for electronic displays; children's toys; and durable, self-repairing aircraft body materials.

Polymers in nature include cellulose, the main constituent of wood and paper. Familiar synthetic polymers include nylon, Teflon and silicone. Mark Dadmun, professor of chemistry at the University of Tennessee and a Joint Faculty appointee in the Chemical Sciences Division at ORNL is exploring what he calls "self-healing materials" — polymer mixtures in which one critical component moves quickly to the surface while the matrix (the understructure) gives structural rigidity.

Specifically, Dadmun is looking at the dynamics of a copolymer (the targeted, surface material) in a matrix (the homopolymer, the bulk of the material). "We design our process so that the copolymer comes to and saturates the surface. We retain a portion in the matrix so that if we lose it at the surface, we simply force the copolymer to the surface again."

Dadmun works with instrument scientist John Ankner at SNS and materials scientist Joe Pickel at the Center for Nanophase Materials Sciences, as well as UT & ORNL Distinguished Scientist Jimmy Mays. Pickel and Mays synthesized the polymer samples. In the self-healing materials, they target the key properties of biocompatibility, microbial resistance, adhesion and flammability.

"Our goal is to design a system in which the majority of the component has the stability we need and the strength to be a suitable matrix," Dadmun says. "We have a separate polymer designed to bloom to the surface, with the potential to provide the surface-sensitive property we need. Because we started with a mixture and forced it to the surface, if the polymer is washed off a reservoir of material would continue to rise to the surface."

Dadmun stresses that finding a copolymer that migrates to the surface is not difficult. More difficult is finding one that gets there fast enough, a process that involves the material's thermodynamics. What the researchers seek to learn is how the specific structure of the copolymer affects the speed with which it migrates to the surface.

The researchers began the experiment with a silicon wafer. They coated the wafer with a thin film, a mixture of deuterated polymethyl methacrylate as the matrix polymer, and a branched copolymer of methyl methacrylate and ethylene oxide. As they heated this sample, allowing the mixture to approach thermal equilibrium, the graft copolymer containing ethylene oxide diffused to the surface. The process enabled the measurement of the water contact angle to verify that the copolymer segregated to the surface.

"We could determine the presence of additional ethylene oxide from the copolymer in the mixture at the surface," Dadmun says. "Our ultimate goal is to use the liquids reflectometer to extract information on how quickly it gets to the surface."

Neutrons are ideally suited to study the copolymer's dynamics because, Dadmun says, "with neutrons we are able to label the material selectively." In Dadmun's samples the matrix is deuterated polymethyl methacrylate and the copolymer is an undeuterated polymethyl methacrylate, grafted to undeuterated ethylene oxide. The various neutron scattering properties of the deuterated and undeuterated materials enable researchers to observe the location and movement of the copolymer in the composite material as a function of the "annealing time," or the heating and slow cooling.

As it is heated, the copolymer tends to migrate to the surface. The experimenters observe the time dependence of the intensity of neutrons scattered from the copolymer near the surface, which can be analyzed to provide detailed dynamics of the copolymer diffusion process. "We thus can analyze the data to determine the diffusion coefficients, as well as other precise dynamic information about the surface segregation process, including the volume and speed."

Dadmun knows from previous experiments that the polymer chain is actually collapsing. "The polymer is changing its conformation away from conventional behavior in the homopolymer because of the repulsive interaction between the polymers. The changes cascade from repulsive interaction, to conformation, to dynamics, which ultimately changes the properties. The cascading effect enables us to correlate the structure and thermodynamics of the copolymer to its dynamics," he says.

"If you think of a polymer chain with long arms, those long arms make it very difficult to move. But because of this odd repulsive interaction they might actually be retracted, and, therefore, may be moving faster. We do not yet have clear evidence of this phenomenon, but this is one of the things our team is trying to determine."

Dadmun is cautious about predicting the future for these polymers. "All of the applications may not be commercially viable, because ultimately it may take too long for the polymers to get to the surface. If the process does prove viable, however, the result will be a wide range of applications. That, after all, is why we do the research."

####

About Oak Ridge National Laboratory
Welcome to Oak Ridge National Laboratory. ORNL is a multiprogram science and technology laboratory managed for the U.S. Department of Energy by UT-Battelle, LLC. Scientists and engineers at ORNL conduct basic and applied research and development to create scientific knowledge and technological solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security.

ORNL also performs other work for the Department of Energy, including isotope production, information management, and technical program management, and provides research and technical assistance to other organizations. The laboratory is a program of DOE's Oak Ridge Field Office.

For more information, please click here

Contacts:
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831
865.574.4160

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project