Home > Press > Magnetism Turns Drug Release On and Off
Abstract:
Many medical conditions, such as cancer, diabetes and chronic pain, require medications that cannot be taken orally, but must be dosed intermittently, on an as-needed basis, over a long period of time. A few delivery techniques have been developed, using an implanted heat source, an implanted electronic chip or other stimuli as an "on-off" switch to release the drugs into the body. But thus far, none of these methods can reliably do all that's needed: repeatedly turn dosing on and off, deliver consistent doses and adjust doses according to the patient's need. But now, a research team led by Daniel Kohane of Children's Hospital Boston has devised a solution that combines magnetism with nanotechnology.
The investigators created a small implantable device, less than 1 centimeter in diameter, that encapsulates the drug in a specially engineered membrane, embedded with magnetic iron oxide nanoparticles. The application of an external, alternating magnetic field heats the magnetic nanoparticles, causing the gels in the membrane to warm and temporarily collapse. This collapse opens up pores that allow the drug to pass through and into the body. When the magnetic field is turned off, the membranes cool and the gels re-expand, closing the pores and halting drug delivery. No implanted electronics are required.
The device, which Kohane's team is continuing to develop for clinical use, is described in the journal Nano Letters. The work detailed in the current paper was conducted in collaboration with Robert Langer, of the Massachusetts Institute of Technology and principal investigator of the MIT-Harvard Center for Cancer Nanotechnology Excellence.
The size of the released dose from the device was reproducibly controlled by the duration of the "on" magnetic field pulse, and the rate of release remained steady over multiple cycles. Testing indicated that drug delivery could be turned on with only a 1 to 2 minute time lag before drug release, and turned off with a 5 to 10 minute time lag. The membranes remained mechanically stable under tensile and compression testing, indicating their durability, showed no toxicity to cells, were not rejected by the immune system in a rat model, and remained functional after forty five days in vivo. The membranes are activated by temperatures higher than normal body temperatures, so would not be affected by the heat of a patient's fever or local inflammation.
This work is detailed in a paper titled, "A Magnetically Triggered Composite Membrane for On-Demand Drug Delivery." Investigators from McMaster University and the University of Zaragoza also participated in this study. An abstract of this paper is available at the journal's Web site.
####
About NCI Alliance for Nanotechnology in Cancer
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.
As part of the Center for Strategic Scientific Initiatives which is led by NCI Deputy Director Dr. Anna Barker, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.
For more information, please click here
Contacts:
NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
(301) 496-1550
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||