Home > Press > Nanometric butterfly wings created
![]() |
This is a section of a butterfly wing under a microscope. Credit: The Pennsylvania State University/ SINC. |
Abstract:
A team of researchers from the State University of Pennsylvania (USA) and the Universidad Autónoma de Madrid (UAM) have developed a technique to replicate biological structures, such as butterfly wings, on a nano scale. The resulting biomaterial could be used to make optically active structures, such as optical diffusers for solar panels.
Insects' colours and their iridescence (the ability to change colours depending on the angle) or their ability to appear metallic are determined by tiny nano-sized photonic structures (1 nanometre=10-9 m) which can be found in their cuticle. Scientists have focused on these biostructures to develop devices with light emitting properties that they have just presented in the journal Bioinspiration & Biomimetics.
"This technique was developed at the Materials Research Institute of the State University of Pennsylvania and it enables replicas of biological structures to be made on a nanometric scale", Raúl J. Martín-Palma, lecturer at the Department of Applied Physics of the UAM and co-author of the study explains to SINC.
The researchers have created "free-standing replicas of fragile, laminar, chitinous biotemplates", that is, copies of the nano structures of butterfly wings. The appearance of these appendices usually depends more on their periodical nanometric structure (which determines the "physical" colour) than on the pigments in the wings (which establish the "chemical" colour).
In order to create new biomaterial, the team used compounds based on Germanium, Selenium and Stibium (GeSeSb) and employed a technique called Conformal-Evaporated-Film-by-Rotation (CEFR), which combines thermal evaporation and substrate rotation in a low pressure chamber. They also used immersion in an aqueous orthophosphoric acid solution to dissolve the chitin (substance typically found in the exoskeleton of insects and other arthropods).
The methods used to date to replicate bio structures are very limited when it comes to obtaining effective copies on a nanometric scale and they often damage the original biostructure because they are used in corrosive atmospheres or at high temperatures. The new technique "totally" overcomes these problems, as it is employed at room temperature and does not require the use of toxic substances.
Martín-Palma points out that the structures resulting from replicating the biotemplate of butterfly wings could be used to make various optically active structures, such as optical diffusers or coverings that maximise solar cell light absorption, or other types of devices. "Furthermore, the technique can be used to replicate other biological structures, such as beetle shells or the compound eyes of flies, bees and wasps," the researcher says.
The compound eyes of certain insects are sound candidates for a large number of applications as they provide great angular vision. "The development of miniature cameras and optical sensors based on these organs would make it possible for them to be installed in small spaces in cars, mobile telephones and displays, apart from having uses in areas such as medicine (the development of endoscopes) and security (surveillance)", Martín-Palma says.
References
Akhlesh Lakhtakia, Raúl J. Martín-Palma, Michael A. Motyka y Carlo G. Pantano. "Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates". Bioinspiration & Biomimetics 4 (3): 034001, septiembre de 2009.
####
For more information, please click here
Contacts:
SINC
34-914-251-820
Copyright © SINC
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Homeland Security
The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023
Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021
Highly sensitive dopamine detector uses 2D materials August 7th, 2020
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Aerospace/Space
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |