Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hydrogen Storage Gets New Hope

Abstract:
Economical hydrogen-based vehicles could result from rechargeable ‘chemical fuel tank'

Hydrogen Storage Gets New Hope

Los Alamos, NM | Posted on September 1st, 2009

A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable hydrogen-based vehicles.

In an article appearing today in Angewandte Chemie, Los Alamos National Laboratory and University of Alabama researchers working within the U.S. Department of Energy's Chemical Hydrogen Storage Center of Excellence describe a significant advance in hydrogen storage science.

Hydrogen is in many ways an ideal fuel for transportation. It is abundant and can be used to run a fuel cell, which is much more efficient than internal combustion engines. Its use in a fuel cell also eliminates the formation of gaseous byproducts that are detrimental to the environment.

For use in transportation, a fuel ideally should be lightweight to maintain overall fuel efficiency and pack a high energy content into a small volume. Unfortunately, under normal conditions, pure hydrogen has a low energy density per unit volume, presenting technical challenges for its use in vehicles capable of travelling 300 miles or more on a single fuel tank—a benchmark target set by DOE.

Consequently, until now, the universe's lightest element has been considered by some as a lightweight in terms of being a viable transportation fuel.

In order to overcome some of the energy density issues associated with pure hydrogen, work within the Chemical Hydrogen Storage Center of Excellence has focused on using a class of materials known as chemical hydrides. Hydrogen can be released from these materials and potentially used to run a fuel cell. These compounds can be thought of as "chemical fuel tanks" because of their hydrogen storage capacity.

Ammonia borane is an attractive example of a chemical hydride because its hydrogen storage capacity approaches a whopping 20 percent by weight. The chief drawback of ammonia borane, however, has been the lack of energy-efficient methods to reintroduce hydrogen back into the spent fuel once it has been released. In other words, until recently, after hydrogen release, ammonia borane couldn't be adequately recycled.

Los Alamos researchers have been working with University of Alabama colleagues on developing methods for the efficient recycling of ammonia borane. The research team made a breakthrough when it discovered that a specific form of dehydrogenated fuel, called polyborazylene, could be recycled with relative ease using modest energy input. This development is a significant step toward using ammonia borane as a possible energy carrier for transportation purposes.

"This research represents a breakthrough in the field of hydrogen storage and has significant practical applications," said Dr. Gene Peterson, leader of the Chemistry Division at Los Alamos. "The chemistry is new and innovative, and the research team is to be commended on this excellent achievement."

The Chemical Hydrogen Storage Center of Excellence is one of three Center efforts funded by DOE. The other two focus on hydrogen sorption technologies and storage in metal hydrides. The Center of Excellence is a collaboration between Los Alamos, Pacific Northwest National Laboratory, and academic and industrial partners.

Referring to the work described in the Angewandte Chemie article, Los Alamos researcher John Gordon, corresponding author for the paper, stated, "Collaboration encouraged by our Center model was responsible for this breakthrough. At the outset there were myriad potential reagents with which to attempt this chemistry."

"The predictive calculations carried out by University of Alabama professor Dave Dixon's group were crucial in guiding the experimental work of Los Alamos postdoctoral researcher Ben Davis," Gordon added. "The excellent synergy between these two groups clearly enabled this advance."

The research team currently is working with colleagues at The Dow Chemical Company, another Center partner, to improve overall chemical efficiencies and move toward large-scale implementation of hydrogen-based fuels within the transportation sector.

An electronic version of the article as it appears in issue 37 of Angewandte Chemie International Edition is available online: www3.interscience.wiley.com/cgi-bin/fulltext/122453478/PDFSTART

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and the Washington Division of URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
JAMES E. RICKMAN
505-665-9203

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project