Home > News > Fighting Climate Change at Nanoscale
August 28th, 2009
Fighting Climate Change at Nanoscale
Abstract:
Climate laws alone cannot shift the global energy paradigm to clean, renewable sources by 2050, but with the help of nanoscience they just might.
U.S. scientists are on the leading edge of nanoscience work that has the potential to facilitate a quantum leap in technology innovation.
This relatively new area of scientific work involves control of materials at the atomic, or molecular, level causing it to undergo a quantum change that makes it lighter and better by increasing the surface size and strength of products, explains Wade Adams, director of the Richard B. Smalley Institute for Nanoscale Science and Technology at Rice University.
"Enabled by nanotechnology, electric cars will happen faster than we ever thought possible," Adams says, explaining that nanoscience is increasing the charge life of batteries, which improves travel distance for electric cars between charges. He notes that a lithium-ion battery patented by A123 Systems uses a nanophosphate cathode chemistry material instead of cobalt oxide, which will provide the Chevy Volt a 200-mile driving range.
Source:
solveclimate.com
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||