Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NSF Emerging Frontiers' program supports development of smart materials based on study of fish

Virginia Tech Assistant Professor of Aerospace and Ocean Engineering Michael Philen is the principal investigator in an interdisciplinary, three-university, National Science Foundation study to create biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control.

Credit: Virginia Tech photo
Virginia Tech Assistant Professor of Aerospace and Ocean Engineering Michael Philen is the principal investigator in an interdisciplinary, three-university, National Science Foundation study to create biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control.

Credit: Virginia Tech photo

Abstract:
After engineers and scientists at Virginia Tech, Harvard and Drexel finish studying the locomotion of fish in water, Michael Phelps may find he still has a few new ways to increase his own world-breaking Olympic times.

NSF Emerging Frontiers' program supports development of smart materials based on study of fish

Blacksburg, VA | Posted on August 19th, 2009

The remarkable ability of fish to maneuver in tight places, or to hover in one area efficiently, or to accelerate in a seemingly effortless fashion has researchers wondering if they can create smarter materials that emulate the biology of these vertebrates.

With an eye towards homeland defense needs, engineers have also noted that fish through neuromasts or 'hairs' in the lateral line are able to sense very small changes in their watery environment that allows them to detect and track prey and to form hydrodynamic images of the environment.

Michael Philen, assistant professor of aerospace and ocean engineering (AOE) at Virginia Tech, has pulled together a team of researchers to study these abilities and hopefully develop biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control. This research will lead to state-of-the-art advanced materials that can intelligently sense and actuate a network of distributed robust sensors and actuators.

Philen has prior experience in this area. As a post doctoral researcher at Penn State, he spent time on a three-year project with the Defense Army Research Projects Agency (DARPA) to develop a new structure/actuation system inspired by the mechanical, chemical, and electrical properties of plants.

Philen's proposal to the National Science Foundation's (NSF) Emerging Frontiers in Research and Innovation program to study fish to create smarter materials has received $1.95 million in funding. Philen's co-principal investigators are Harry Dorn, professor of chemistry, and Don Leo, associate dean of engineering, both at Virginia Tech. George Lauder, a professor of biology at Harvard, and James Tangorra, an assistant professor of mechanical engineering and mechanics at Drexel, round out the team.

Working together, the team will develop distributed sensors and actuators using nanotechnology, advanced composite technology, and smart polymeric materials for understanding the organization and structure of the control systems fish use for sensing and maneuvering.

With the inclusion of Harvard University, the research team also plans to develop a traveling exhibit on robotic fish that showcases the biology of aquatic propulsion, new actuator and sensing technologies and how these can be integrated to design a robotic fish. Harvard's Museum of Natural History (http://www.hmnh.harvard.edu/ with its links to "Kids and Families" and "Educators" receive some 33,000 school-aged visitors each year. They will have access to the robotic fish exhibit on line through this site.

Lisa McNair of Virginia Tech's Engineering Education Department, an expert on applying theories of interdisciplinary collaboration in research and teaching practices, will work with the Harvard Museum to assess the impact on the students' understanding of the biological mechanisms that allow fish to sense, swim and maneuver efficiently with minimal processing.

Philen explained that over the past 20 years experts such as George Lauder from Harvard have investigated a number of aspects of fish control systems for movement. These studies have shown that fish possess a two-gear muscular system that controls movement. One is for slow-speed movement and the other is for rapid movements and escape responses.

"Despite this progress, there is still very little understanding of the structure and organization of the hierarchical control systems in fish or how the actuation and sensing systems are integrated to perform steady and maneuvering locomotor tasks," Philen said. "Researchers have explored various system identification techniques for characterizing and understanding a number of biological systems, such as insect walking, renal autoregulation in rats, and locomotor oscillators in the spinal cords of lampreys. However, little or no research has been done on the hierarchal control systems found in fish."

The team of researchers plans to create a robotic fish-like underwater vehicle by integrating their biological investigations of the fish with engineering knowledge about sensors and actuators.

"We view this as an exciting opportunity to create a transformative leap in the development of new biologically inspired material systems," Philen said.

####

For more information, please click here

Contacts:
Lynn Nystrom

540-231-4371

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Sports

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project