Home > Press > New electrode for improved lithium-ion battery performance
Dr. Ming Au developed nanostructured anodes |
Abstract:
A new kind of anode developed at DOE's Savannah River National Laboratory is expected to increase the energy density of lithium-ion batteries four-fold—or enough to enable the battery to power an electric car for 300 miles on a single charge.
The energy storage capacity of today's lithium-ion batteries is limited by the widely used graphite anode, in which lithium (Li) ions are sandwiched into the carbon layer structure, with every six carbon atoms accommodating one Li atom. This structure gives the graphite anode a theoretical capacity of 372mAh/g. Reaching the 300-mile goal will require increasing the energy density 3-4 times that of the traditional anode.
SRNL's Dr. Ming Au developed nanostructured anodes that not only reach the desired increase in energy density, but use a production method that eliminates safety and environmental concerns presented by standard fabrication of carbon based anodes. The next challenge will be to sustain that energy density through multiple charge-discharge cycles.
His solution uses nanorods of various metals and metal oxides directly formed with the current collectors. Although tiny, these nanorods have the advantage of large surface areas for lithium ions to access, which means they can bind a higher number of lithium cations than the conventional graphite design.
Studies of these formations have shown that numerous inexpensive metals and metal oxides can be considered for nanorod formations to elevate charge capacities of the anodes in lithium-ion batteries. Further studies are ongoing to explore other nanostructure such as nanoporous hollow spheres of metals and metal oxides, understand the mechanism of lithium reaction in anode and sustain the high energy density through multiple charge-discharge cycles.
####
About Savannah River National Laboratory
SRNL is collaborating in several new projects to advance the nation’s energy security under two programs recently announced by the U.S. Department of Energy, the Energy Frontier Research Centers and the Nuclear Energy University Program.
For more information, please click here
Contacts:
Media Relations
Angeline (Angie) French
(803) 725-2854
Savannah River National Laboratory
Savannah River Site
Aiken, SC 29808
Copyright © Savannah River National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||