Home > News > Life on Mars with Pete Worden
July 2nd, 2009
Life on Mars with Pete Worden
Abstract:
Pete Worden, Director of the NASA Ames Research Center and an Advisor to the Space and Physical Sciences Track of Singularity University, "We have already done a lot of work on autonomous robots, which is the first step. Many of the Mars robots we've sent there have JPL on the outside and NASA Ames on the inside, since a lot of the software has been developed right here."
"Next, we'll want to build self-replicating robots, and that's why nanotechnology, artificial intelligence, and other technologies being worked on at Singularity University are so interesting. When you start looking at self-replicating robots, a biologist would tell you "well, we already know how to do that. Those are called living cells. Microbes." in particular. So one of the obvious questions is: Can we begin to take existing microbes and engineer them to do things? And then, at some point, can you actually create synthetic life that can be engineered to extract the materials you need and construct environments?"
"We have a research group here at NASA Ames that is looking at "extremophiles," life forms able to operate under highly extreme conditions, such as close to the boiling point of water, or in highly acidic conditions. These conditions may or may not represent exactly what you'd find on Mars, but we've been able to extract these self-replicating proteins and are beginning to figure out how you can replicate them to manipulate metals to construct substrates, and maybe even grow an electronic component."
h+: Are you talking about creating "synthetic life" that will duplicate what's going on with biology?
PW: Yes. Eventually. But at first, we're just using what we've already found in nature. In fact, there was an article the other day about using viruses to create batteries, and that you can modify the genome of a virus to construct battery leads (+, -), to create a kind of "nanobattery" using the viruses.
So rather than using the current manufacturing process, where somebody melts metal and pours it into molds and machines those parts together into an electrical component, in the future, we'll use microbes and proteins to "grow" them. In a cell, a particular genetic coding manufactures a particular kind of protein that it links to build, say, a cell wall. Well, supposing we modify that so rather than building a cell wall, it builds a substrate for an electronic component. It might be a simple modification to say, "OK, build this in a flat area." Then you have another one that comes in and says "OK, every few microns we have an electronic lead."
Source:
hplusmagazine.com
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Synthetic Biology
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Aerospace/Space
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Artificial Intelligence
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |