Home > Press > Nanotechnology Combats Fatal Brain Infections
Abstract:
IBN's Minute Antibacterial Particles Destroy Drug-Resistant Germs
Institute of Bioengineering and Nanotechnology (IBN), Singapore - Doctors may get a new arsenal for meningitis treatment and the war on drug-resistant bacteria and fungal infections with IBN's novel peptide nanoparticles. The stable bioengineered nanoparticles devised at IBN effectively seek out and destroy bacteria and fungal cells that could cause fatal infections. Studies just published in the world's leading nanoscience journal Nature Nanotechnology, that has an Impact Factor of 14.917, (DOI:10.1038/NNANO.2009.153) show IBN's nanoparticles to be highly therapeutic.1
Using nanotechnology, the IBN team has produced an effective treatment for brain infections. Major brain infections such as meningitis and encephalitis are a leading cause of death, hearing loss, learning disability and brain damage in patients. The brain membrane is impenetrable to most conventional antibiotics because the molecular structure of most drugs is too big to enter the membrane. IBN's peptide nanoparticles, on the other hand, contain a membrane-penetrating component that enables them to pass through the blood brain barrier to the infected areas of the brain that require treatment. The ability of IBN's peptide nanoparticles to traverse the blood brain barrier offers a superior alternative to existing treatments for brain infections.
Dr Yiyan Yang, IBN Group Leader, elaborates on the effectiveness of the peptide nanoparticle treatment against so-called "superbugs" or multi-drug resistant bacteria, yeast and fungi, "Our treatment damages the structure of the pathogen and literally breaks it apart. Our oligopeptide has a unique chemical structure that forms nanoparticles with membrane-penetrating components on their surface. These nanoparticles can easily enter bacteria, yeast or fungal cells and destabilize them to cause cell death. For example, the nanoparticles cause damage to bacteria cell walls and prevent further bacterial growth."
The IBN research team has demonstrated that these engineered peptide nanoparticles have high antimicrobial activity and are highly effective in killing microbes. Additionally, the peptide nanoparticles are more powerful in inhibiting the growth of fungal infections than conventionally available anti-fungal drugs such as fluconazole and amphotericin B. "We are able to kill bacteria better than conventional antibiotics. By attacking the cellular structure of the microbes, our nanoparticles can be used to successfully combat persistant bacterial infections," added Dr Lihong Liu, IBN Research Scientist.
Pre-clinical tests have shown that IBN's peptide nanoparticles are biocompatible and cause no damage to the liver or kidneys at tested doses. Highly anti-infective, the therapeutic doses of the peptide nanoparticles are expected to be safe for use because they also do not damage red blood cells.
Professor Jackie Y. Ying, IBN Executive Director, expressed the aim of the IBN research project, "Our interdisciplinary research groups have made tremendous progress in finding novel drug and gene delivery avenues for medical treatments. With this peptide nanoparticle, we have found a way through the blood brain barrier and produced a treatment for previously challenging diseases."
[1] L. Liu, K. Xu, H. Wang, J. P. K. Tan, W. Fan, S. S. Venkatraman, L. Li and Y. Yang, "Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent", Nature Nanotechnology, (2009) DOI: 10.1038/NNANO.2009.153.
About the Institute of Bioengineering and Nanotechnology
####
About A*STAR
The Institute of Bioengineering and Nanotechnology (IBN) was established in 2003 and is spearheaded by its Executive Director, Professor Jackie Yi Ru Ying, who has been on the Massachusetts Institute of Technology’s Chemical Engineering faculty since 1992, and was among the youngest to be promoted to Professor in 2001. In 2008, Professor Ying was recognized as one of “One Hundred Engineers of the Modern Era” by the American Institute of Chemical Engineers for her groundbreaking work on nanostructured systems, nanoporous materials and host matrices for quantum dots and wires. Under her direction, IBN conducts research at the cutting-edge of bioengineering and nanotechnology. Its programs are geared towards linking multiple disciplines across all fields in engineering, science and medicine to produce research breakthroughs that will improve healthcare and our quality of life.
For more information, please click here
Contacts:
For enquiries and interview requests, please contact:
Nidyah Sani at or +65 6824 7005
Laura Lau at or +65 6824 7040
Copyright © A*STAR
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||