Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > mPhase Successfully Manufactures First 6-Inch Silicon-Based Wafer for Smart NanoBattery

Abstract:
mPhase Technologies, Inc. (OTCBB:XDSL) reported today that it has achieved a major milestone in the development of its Smart NanoBattery Technology. mPhase reported that it has successfully manufactured a six-inch silicon-based wafer containing its key membrane (separator) technology. This separator is responsible for keeping the Smart NanoBattery's chemicals separated until activated. The membrane's unique surface and structure allows for control of a liquid on a nanostructured surface.

mPhase Successfully Manufactures First 6-Inch Silicon-Based Wafer for Smart NanoBattery

Little Falls, NJ | Posted on June 23rd, 2009

Each six-inch-diameter silicon wafer contains the separator material for 10 individual Smart NanoBatteries with each battery consisting of 12 "smart cells." Beneath the specialized wafer and contained within each of the smart cells, MEMS processing, microfluidics, and nanotechnology come together to form a unique superhydrophobic honeycomb structure. mPhase has figured out how to use these nano-structured surfaces and technologies to control the battery's liquid electrolytes which mix with the electrodes to create power. In the case of the Smart NanoBattery, the electrolytes can be kept separated from the electrodes until power is needed. Conventional batteries experience power dissipation as soon as the battery is assembled, but mPhase has eliminated this issue by separating the electrolytes from the electrodes. At the precise moment power is needed, the liquid electrolytes are controlled to pass through the porous silicon membrane (separator) where they will then come in contact with the electrodes to provide "Power on Command(tm)."

"This fabrication of the silicon membrane is a milestone achievement that represents a key advancement in the STTR development program," said mPhase CEO Ron Durando. "With each step forward, we are making technical advancements that have never been accomplished before. This advancement creates the potential for an unattended device to be powered by a battery with an unsurpassed shelf life that can be electronically controlled."

The Smart NanoBattery is being developed as part of the U.S. Army STTR Program. mPhase was awarded a two year Phase II development contract by the U.S. Army in September 2008 to develop this unique new battery technology for military purposes.

####

About mPhase Technologies, Inc.
mPhase Technologies, Inc. (OTCBB:XDSL), through its wholly owned subsidiary AlwaysReady, Inc., is focused on developing and commercializing a new battery technology based on a well-patented phenomenon known as electrowetting, which provides a unique way to store energy and manage power that will revolutionize the battery industry.

This news release contains forward-looking statements related to future growth and earnings opportunities. Such statements are based upon certain assumptions and assessments made by management of companies mentioned in this press release in light of current conditions, expected future developments and other factors they believe to be appropriate. Actual results may differ as a result of factors over which the company has no control.

For more information, please click here

Contacts:
mPhase Technologies, Inc.
Mr. John Levitt, Public Relations Coordinator
973-256-3737

Copyright © GlobeNewswire, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project