Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NanoInk Announces a New Extended Variable Temperature Control Module to Enhance DPN

Abstract:
Recent advances in producing a variety of new nanoscale products using NanoInk's patented Dip Pen Nanolithography(R) (DPN(R)) have been achieved with a new thermoelectric variable temperature stage module.

NanoInk Announces a New Extended Variable Temperature Control Module to Enhance DPN

Skokie, IL | Posted on May 28th, 2009

Vice President of NanoInk's NanoFabrication System Division, Tom Levesque stated "We have seen that the versatility of the materials which can be controllably deposited with DPN will grow with this new range of temperatures. Previous work centered around materials deposited close to ambient conditions, but this new approach enables the deposition of a wide variety of new molecules that were deemed challenging and impossible to deposit under ambient conditions. This gives us more flexibility and expands our choice of chemistries. This new stage extends the range from as low as 4 to as high as 80 degrees C."

Recent work presented at the NSTI meeting in Houston, Texas, showed how extended temperatures enabled the creation of modified substrates for stem cell culture. Dr. Nabil A. Amro, Senior Scientist at NanoInk, explained: "Our ability to fabricate features of alkanethiols under 100nm in size and extending over areas of square centimeters could not have been achieved without extended temperature control. These substrates are proving truly remarkable at controlling and selecting specific stem cell paths of differentiation."

The extended temperature DPN module will be available for NanoInk's DPN 5000 and NSCRIPTOR(R) systems in July. Contact NanoInk for more information at


NanoInk, the NanoInk logo, Dip Pen Nanolithography, DPN and NSCRIPTOR are trademarks or registered trademarks of NanoInk, Inc.

####

About NanoInk
NanoInk, Inc. is an emerging growth technology company specializing in nanometer-scale manufacturing and applications development for the life science and semiconductor industries. Using Dip Pen Nanolithography(R) (DPN(R)), a patented and proprietary nanofabrication technology, scientists are enabled to rapidly and easily create nanoscale structures from a wide variety of materials. This low cost, easy to use and scalable technique brings sophisticated nanofabrication to the laboratory desktop.

Located in the new Illinois Science + Technology Park, north of Chicago, NanoInk currently has over 140 patents and applications filed worldwide and has licensing agreements with Northwestern University, Stanford University, University of Strathclyde, University of Liverpool, California Institute of Technology and the University of Illinois at Urbana-Champaign. For more information on products and services offered by NanoInk, Inc., see www.nanoink.net.

For more information, please click here

Contacts:
For further information:

Please contact NanoInk direct or their PR agency, NetDyaLog Limited:

NanoInk, Inc.
8025 Lamon Avenue
Skokie
Illinois 60077
United States of America
T +1 847 745 3619
F +1 847 679 8767
www.nanoink.net


NetDyaLog Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
F +44(0)1799 521881
www.netdyalog.com


NanoInk contact:
Sarah Kosar Raup, +1 847 745 3619

Media contact:
Jezz Leckenby, +44(0)1799 521881

Copyright © NanoInk

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project