Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > World's fastest camera relies on an entirely new type of imaging

Abstract:
Ultrafast, light-sensitive video cameras are needed for observing high-speed events such as shockwaves, communication between living cells, neural activity, laser surgery and elements of blood analysis. To catch such elusive moments, a camera must be able to capture millions or billions of images continuously with a very high frame rate. Conventional cameras are simply not up to the task.

World's fastest camera relies on an entirely new type of imaging

Los Angeles, CA | Posted on April 30th, 2009

Now, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have developed a novel, continuously running camera that captures images roughly a thousand times faster than any existing conventional camera.

In a paper in the April 30 issue of Nature (currently available online), UCLA Engineering researchers Keisuke Goda, Kevin Tsia and team leader Bahram Jalali describe an entirely new approach to imaging that does not require a traditional CCD (charge-coupled device) or CMOS (complementary metal-oxide semiconductor) video camera. Building on more than a decade of research on photonic time stretch, a technique for capturing elusive events, the team has demonstrated a camera that captures images at some 6 million frames per second.

"The most demanding application for high-speed imaging involves fast events that are very rare, rogue events or the proverbial needle in the haystack — in other words, unusual events that carry important information," said Jalali, a professor of electrical engineering and principal investigator of the project.

One of the applications he envisions for the camera is flow cytometry, a technique used for blood analysis. Traditional blood analyzers can count cells and extract information about their size, but they cannot take pictures of every cell because no camera is fast and sensitive enough for the job. At the same time, images of cells are needed to distinguish diseased cells from healthy ones. Today, pictures are taken manually under a microscope from a very small sample of blood.

But what if you needed to detect the presence of very rare cells that, although few in number, signify the early stages of a disease? Circulating tumor cells are a perfect example. Typically, there are only a handful of them among a billion healthy cells; yet these cells are precursors to metastasis, the spread of cancer that causes about 90 percent of cancer mortalities.

"The chance that one of these cells will happen to be on the small sample of blood viewed under a microscope is negligible," Jalali said. "To find these rogue cells — needles in the haystack — you need to analyze billions of cells, the entire haystack. Ultra-high-speed imaging of cells in flow is a potential solution for detection of rare abnormal cells."

The new imager operates by capturing each picture with an ultrashort laser pulse — a flash of light only a billionth of a second long. It then converts each pulse to a serial data stream that resembles the data in a fiber optic network rather than the signal coming out of a camera. Using a technique known as amplified dispersive Fourier transform, these laser pulses, each containing an entire picture, are amplified and simultaneously stretched in time to the point that they are slow enough to be captured with an electronic digitizer.

The fundamental problem in performing high-speed imaging, Jalali says, is that the camera becomes less and less sensitive at higher and higher speeds. It is simple to see why: At high frame rates, there is less time to collect photons in each frame before the signal becomes weaker and more prone to noise. The new imager overcomes this because it is the first to feature optical image amplification.

"Our serial time-encoded amplified microscopy (STEAM) technology enables continuous real-time imaging at a frame rate of more than 6 MHz, a shutter speed of less than 450 ps and an optical image gain of more than 300 — the world's fastest continuously running camera, useful for studying rapid phenomena in physics, chemistry and biology," said research co-author Goda, a postdoctoral researcher in the group.

One such phenomenon the group has studied with the new camera is laser ablation, an important technology that is the basis of laser medicine. The camera can capture laser ablation happening in real time, providing important clues for understanding the process and optimizing its effectiveness.

"Unlike other high-speed imaging methods, our approach does not require cooling of the camera or high-intensity illumination — problems that plague conventional CCD and CMOS cameras," said Kevin Tsia, a graduate student in the group and a co-author of the research.

The study was funded by the Defense Advanced Research Project Agency (DARPA), the U.S. Department of Defense's central research and development organization.

####

About University of California - Los Angeles
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to six multimillion-dollar interdisciplinary research centers in space exploration, wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.

For more news, visit the UCLA Newsroom.

For more information, please click here

Contacts:
Wileen Wong Kromhout

310-206-0540

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project