Home > Press > Catching the lightwave: Nano-mechanical sensors 'wired' by photonics
![]() |
This image shows the electronmicroscopic image of array (top) and simulation of lightwaves through array (bottom).
Credit: Li, Pernice,Tang / Yale |
Abstract:
As researchers push towards detection of single molecules, single electron spins and the smallest amounts of mass and movement, Yale researchers have demonstrated silicon-based nanocantilevers, smaller than the wavelength of light, that operate on photonic principles eliminating the need for electric transducers and expensive laser setups.
The work reported in an April 26 advance online publication of Nature Nanotechnology ushers in a new generation of tools for ultra-sensitive measurements at the atomic level.
In nanoelectromechanical systems (NEMS), cantilevers are the most fundamental mechanical sensors. These tiny structures fixed at one end and free at the other act like nano-scale diving boards that "bend" when molecules "jump" on them and register a change that can be measured and calibrated. This paper demonstrates how NEMS can be improved by using integrated photonics to sense the cantilever motion.
"The system we developed is the most sensitive available that works at room temperature. Previously this level of sensitivity could only be achieved at extreme low temperatures" said senior author Hong Tang, assistant professor of electrical and mechanical engineering in the Yale School of Engineering and Applied Sciences.
Their system can detect as little deflection in the nano-cantilever sensors as 0.0001 Angstroms one ten thousandth of the size of an atom
To detect this tiny motion, the Yale team devised a photonic structure to guide the light wave through a cantilever. After exiting from the free end of the cantilever, the light tunnels through a nanometer gap and is collected on chip. "Detecting the lightwave after this evanescent tunneling," says Tang, "gives the unprecedented sensitivity."
Tang's paper also details the construction of a sensor multiplex a parallel array of 10 nano-cantilevers integrated on a single photonic wire. Each cantilever is a different length, like a key on a xylophone, so when one is displaced it registers its own distinctive "tone."
"A multiplex format lets us make more complex measurements of patterns simultaneously like a tune with chords instead of single notes," said postdoctoral fellow Mo Li, the lead author of the paper.
At the heart of this breakthrough is the novel way Tang's group "wired" the sensors with light. Their technique is not limited by the bandwidth constraints of electrical methods or the diffraction limits of light sources.
"We don't need a laser to operate these devices," said Wolfram Pernice, a co-author of the paper. "Very cheap LEDs will suffice." Futhermore, the LED light sources like the million LED pixels that make up a laptop computer screen can be scaled in size to integrate into a nanophotonic-chip an important feature for this application.
"This development reinforces the practicality of the new field of nanooptomechanics," says Tang, "and points to a future of compact, robust and scalable systems with high sensitivity that will find a wide range of future applications from chemical and biological sensing to optical signal processing."
Funding for the research was from a Yale Institute for Nanoscience and Quantum Engineering seed grant, a National Science Foundation career award, and the Alexander-von-Humboldt postdoctoral fellowship programs.
Citation: Nature Nanotechnology: Advance Online Publication April 26, 2009
doi = 10.1038/NNANO.2009.92
####
For more information, please click here
Contacts:
Janet Rettig Emanuel
203-432-2157
Wolfram Pernice
Copyright © Yale University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Yale School of Engineering and Applied Sciences
Yale Institute for Nanoscience and Quantum Engineering
Related News Press |
News and information
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers squeeze laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |