Home > Press > Physicists Engineer the Picture-Perfect Classical Atom
Abstract:
Picture the textbook atom. It would resemble a miniature solar system — an atomic nucleus orbited by electrons, drawn in nice tidy elliptical orbits — like planets orbiting the Sun. This is a reasonable classical depiction of an atom, but it is completely at odds with the usual quantum description of an atom. Now, a University of Virginia physicist has engineered, in a sense, the classical picture-perfect textbook atom.
In the quantum energy states of a one-electron atom, the electron does not move in an orbit, but is described by a wave function, which, when squared, produces a probability cloud about the nucleus which does not change in time.
The electron can be in any given place at any given time, and at all places at once. That is quantum mechanics, an arena of physics so strange and complicated, even physicists admit it is hard to picture.
But University of Virginia physicist Tom Gallagher and his colleagues have engineered, in a sense, the classical picture-perfect textbook atom.
The physicists used a weak microwave field to lock together the time-dependent phase evolutions of the wave functions of several energy states. If only one energy state's wave function is present, its phase is of no consequence; but if there are two or more, the phases matter.
At any given time the wave functions add in one region of space and cancel in another. When the composite wave function is squared, the probability is localized, and it moves, just like the classical atom we picture.
Gallagher and his team recently published their results in Physical Review Letters (volume 102, page 103001).
Researchers at the University of Rochester originally suggested that making such classical atoms might be possible, noting the similarity to Lagrange points — regions of space where gravity from a variety of points, such as planets, affect the orbits of other bodies in space, and can cancel out distant sources of gravity.
To realize such atoms in the laboratory, Gallagher and his team struck upon the idea of first locking the motion of an electron to a linearly polarized field, producing an atom in which the electron oscillates along a line, and then altering the microwave polarization to circular. The electron orbit follows the changing polarization, becoming a circular orbit.
"We honestly were quite surprised by how well we could manipulate the atom with our technique," Gallagher said. "We demonstrated that we can change the state of the atom in a way that was once considered impossible."
Carlos Stroud, a physicist at the University of Rochester, marveled at the quality of Gallagher's work in a commentary for the publication Physics; and he later described the experiment as "a beautiful piece of physics" for the magazine New Scientist.
Gallagher's co-authors are U.Va. graduate student Joshua Gurian and Haruka Maeda, now of the Japan Science and Technology Agency.
####
For more information, please click here
Contacts:
Fariss Samarrai
434-924-3778
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||