Home > Press > Magnetic Vortex Switch Leads to Electric Pulse
Abstract:
Researchers at the University of Arkansas have shown that changing the chirality, or direction of spin, of a nanoscale magnetic vortex creates an electric pulse, suggesting that such a pulse might be of use in creating computer memory and writing information.
Physicists Sergey Prosandeev and Laurent Bellaiche reported their findings in Physical Review Letters.
"This is new physics," Prosandeev said. "There are many possibilities that can follow from this."
The researchers looked at ferromagnets, a class of materials with novel properties at the nanoscale that have the potential to create new, efficient devices. They focused on the recently discovered vortex structure found at the nanoscale, investigating if a possible electric field can be generated when the vortex changes chirality.
"We change the magnetic structure but measure the associated electric field," Prosandeev said.
They found that switching the direction of the vortex from clockwise to counterclockwise produced a positive electric pulse - and that switching the vortex in the opposite direction created an electric pulse with a negative sign. The resulting electric pulse can thus serve as the fingerprint indicating that switches of vortices did occur, as such a switch is difficult to directly observe.
Switching of some physical properties such as polarization or magnetization currently is used in computer memory and writing and storing information, but because of the larger scale, it requires more energy and materials. Being able to create switches of vortices with less material and energy could create more efficient devices.
The researchers have derived a formula showing the relationship between the magnetic vortex and the electric pulse and have shown how it occurs graphically over time. The next step will be experiments to see this phenomenon in action.
"Theoreticians show what can be the next step," Prosandeev said. "These relationships can then be applied to technology."
####
About University of Arkansas
The University of Arkansas, often shortened to U of A or just UA, is a public co-educational land-grant university. It is the flagship campus of the University of Arkansas System and is located in Fayetteville, Arkansas. Founded as Arkansas Industrial University in 1871, its present name was adopted in 1899 and classes were first held in February 1872. It is noted for its strong architecture, agriculture (particularly poultry science),[4] creative writing and business programs.[5] It is also noted for the fact that University of Arkansas engineering students won the 2006 world championship for solar-powered boats.
Source: Wikipedia, the free encyclopedia
For more information, please click here
Contacts:
Sergey Prosandeev, research professor, physics
J. William Fulbright College of Arts and Sciences
479-575-6668,
Laurent Bellaiche, Twenty-First Century Endowed Professorship in Nanotechnology and Science Education, and professor of physics
J. William Fulbright College of Arts and Sciences
479-575-6425,
Melissa Lutz Blouin, director of science and research communications
University Relations
479-575-5555,
Copyright © University of Arkansas
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Memory Technology
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |