Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > PolyU spearheads research in nanostructured materials

Abstract:
The Hong Kong Polytechnic University (PolyU) has recently received research funding totaling more than $9 million from the Research Grants Council (RGC), the Innovation and Technology Fund (ITF) and industry partners to advance the study of nanostructured materials on both theoretical and technological application sides.

PolyU spearheads research in nanostructured materials

Hong Kong | Posted on April 4th, 2009

The Hong Kong Polytechnic University (PolyU) has recently received research funding totaling more than $9 million from the Research Grants Council (RGC), the Innovation and Technology Fund (ITF) and industry partners to advance the study of nanostructured materials on both theoretical and technological application sides.

The grants will support two nanotech projects led by Prof. Lu Jian, Chair Professor and Head of PolyU's Department of Mechanical Engineering. The project funded by ITF-affiliated "Nano and Advanced Materials Institute Ltd" (NAMI) is expected to benefit the aerospace and steel industries; while the collaborative research supported by RGC will help demystify the underlying principle of nanostructure and establish related theory. Theories and multiscale numerical simulation tools will be developed from molecular level to macroscopic structural level that could be applied to car and aircraft.

In carrying out the ITF NAMI-funded project entitled "Development of the Layered Nanostructured Metallic Sheet/Plate for Structural Applications", PolyU has also won the support of two industry partners, namely the famous Baosteel Group Company of China and the European Aeronautic Defence and Space Company. Both are Fortune 500 companies while the latter is a global leader in aerospace, defence and related services.

Prof. Lu said this partnering has enabled PolyU to enhance its leading position in the technology of nanomaterials research for structural applications. He will lead a team to explore the potential of their newly-developed nanomaterials in structural applications for different targeted industrial sectors. The platform to be applied in their investigation of residual stress distribution measurement in nanostructured materials is unique in the world. Its application is also far-reaching and could be extended to other alloys and composites based on nanocrystalline materials or amorphous materials.

To better understand the underlying mechanism of the nanostructured generation of materials and its multiscale failure modes, Prof. Lu is also taking the lead in studying the "Design and Realization of Structural Materials with High Strength and High Ductility" together with nanotechnology experts from the Hong Kong University of Science and Technology, the Chinese University of Hong Kong and the University of Hong Kong. Through this project, the team will collaborate with three internationally well-known institutions from the US and France (namely the University of California at Berkeley, Pennsylvania State University in the US; and INRIA, the French national institute for research in computer science and control).

The project will address four key issues that would emerge when integrating the nanostructured materials for structural applications. They are (1) Improving the ductility of nanostructured materials and producing the materials at large scale; (2) Development of advanced numerical simulation tools for studying two highly conflicting key mechanical properties: Strength and Ductility; (3) Development of advanced experimental methods for investigating the fundamental fracture mechanisms; and (4) Development of joining technology for nanostructured materials using "Pulsed Laser Welding", and to optimize the welding conditions for conserving the nanostructures and the strength of the nanostructured materials.

Prof. Lu is a pioneering researcher in the fields of material science and engineering, mechanical engineering and mechanics. In studying nano-scale structural materials, the research teams leaded by Prof. J.Lu and his collaborator Prof. K.Lu (IMR, CAS) put forward the idea of "Nitriding Iron at Lower Temperatures" to refine the microstructure on the surface layer of an iron plate, and the article was published in the Science Magazine (January 31, 2003 issue). He also co-invented the SMAT together with Prof. Lu Ke of the Chinese Academy of Sciences with several issued patents in Europe, USA and China.

The sophisticated SMAT process could bring about a change in surface microstructure through generating an in-situ nanocrystalline layer on the surface of bulk metal. While most surface-modification techniques for solid materials are based on chemical reactions, SMAT seeks to reduce the grains sizes down to nanometer scale on the top surface layer through random mechanical plastic deformation. Hence this process represents a new approach to modify the properties and functionalities of the surface layer of materials.

This advanced technique can be combined with traditional work surface treatment methods to improve the mechanical properties of materials. It is applicable to producing advanced composite materials for a wide range of industries, including automotive, aerospace, civil structures, machinery, power generation, and bio-medical industry.

Over the years, Prof. Lu has received numerous honours for his breakthroughs. In 2006, he was awarded "The French Knight Order of National Merit" (Chevalier de l'Ordre National du Merite) by the French Government in recognition of his illustrious research and academic achievements. He further received a Gold Medal with Mention and a Special Prize in the 2007 Brussels Eureka Expo - The 56th World Exhibition of Invention, Research and Industrial Innovation for his invention "Nanostructured Materials Generation System - SMAT".

The two new research projects will continue the research work carried out by the Department of Mechanical Engineering since 2005, under the niche area scheme in the field of nanotechnology research with a focus on the Product Engineering through the Integration of Advanced and Nano-materials in Design. It will enhance the research capacity and ensure the worldwide leadership of PolyU in this research area of structural nano-materials in the future.

####

About Hong Kong Polytechnic University (PolyU)
Our Motto: To learn and to apply, for the benefit of mankind.
The above is derived from the Chinese motto, quoted from the great Chinese classic Yijing (Book of Change) and two ancient treatises, one from Han dynasty and the other from pre-Qin times.

The original Chinese text can be paraphrased as follows: "Learn every truth and use the knowledge learned to accomplish every task" and "to learn; to serve".

For more information, please click here

Contacts:
Prof. Lu Jian
Chair Professor and Head, Department of Mechanical Engineering
Tel: 852-2766 6665

Copyright © Hong Kong Polytechnic University (PolyU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Investments/IPO's/Splits

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

180 Degree Capital Corp. Reports +14.2% Growth in Q1 2021, $10.60 Net Asset Value Per Share as of March 31, 2021, and Developments From Q2 2021 May 11th, 2021

INBRAIN Neuroelectronics raises over €14M to develop smart graphene-based neural implants for personalised therapies in brain disorders March 26th, 2021

180 Degree Capital Corp. Issues Second Open Letter to the Board and Shareholders of Enzo Biochem, Inc. March 26th, 2021

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project