Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemists announce nanotech breakthrough

Abstract:
Imagine you are looking through a very high-powered microscope at the smallest tube in the world - a single-walled carbon nanotube so tiny that a million can fit on the head of a pin.

Chemists announce nanotech breakthrough

Storrs, CT | Posted on April 1st, 2009

Imagine too that the exterior of the tube is covered in small irregular bumps caused by oxygen molecules that cling to the outside like barnacles on a pier. Now imagine trying to slide something - a slightly larger tube perhaps - over the bumpy tube to smooth out the surface.

In this molecular, microscopic world, it isn't easy; a near impossibility, in fact, that has proven a barrier to scientists for years.

But now, chemistry professor Fotios Papadimitrakopoulos and a team of researchers in the Nanomaterials Optoelectronics Laboratory at the Institute of Materials Science have found a way to smooth the surface of nanotubes, in what Papadimitrakopoulos describes as a major nanotechnology breakthrough that could have significant applications in medical imaging and other areas.

By developing a process in which a chemical ‘sleeve' tightly wraps itself around the nanotube, Papadimitrakopoulos managed to not only create a smooth new surface on the nanotube but also to ‘clean' its underlying exterior of defects in a way that has never been accomplished before.

Carbon nanotubes have traditionally been very poor emitters of light because of their bumpy exterior defects and have therefore been limited in some of their technological and medical applications.

As a result of the newly discovered wrapping process, Papadimitrakopoulos managed to increase the luminescence efficiency - the light emitting capability - of the nanotube 40-fold.

That increased luminescence, he says, opens the way for broad new advancements in science.

"The nanotube is the smallest tube on earth and we have found a sleeve to put over it," says Papadimitrakopoulos, whose discovery is featured in the March 6 issue of Science magazine. (www.sciencemag.org/cgi/content/short/323/5919/1319)

"This is the first time that a nanotube was found to emit with as much as 20 percent luminescence efficiency."

The more luminescent the nanotube, the brighter it appears under infrared irradiation or by electrical excitation (such as that provided by a light-emitting diode or LED).

Carbon nanotube emissions are not only extremely sharp, but they also appear in a spectral region where minimal absorption or scattering by soft tissue takes place, making them ideal for medical imaging, Papadimitrakopoulos says.

Increasing the luminescence efficiency of carbon nanotubes may someday make it possible for doctors to inject patients with microscopic nanotubes to detect tumors, arterial blockages, and other internal problems.

Rather than relying on potentially harmful X-rays or the use of radioactive dyes, physicians could simply scan patients with an infrared light that would capture the luminescence of the nanotubes in problem areas in very sharp resolution.

Carbon nanotubes also have properties that make them ideally suited for near-infrared emitters, Papadimitrakopoulos says, making them appropriate for applications in homeland security as bio-reporting agents in the case of terrorist attacks and as nano-sized beacons.

Their luminescence also allows them to readily integrate with silicon-based technology. This provides an enormous repertoire for nanotube use in advanced fiber optics components, infrared light modulators, and biological sensors.

The key to the discovery was a flavin-based (Vitamin B2) helical wrapping that formed an especially tight and seamless barrier around the nanotube.

Working closely with Papadimitrakopoulos in discovering the wrapping process were Sang-Yong Ju, a graduate student in the Polymer Program (now a researcher at Cornell University), and William Kopcha, a former undergraduate in chemistry in the College of Liberal Arts and Sciences who is now a first-year graduate student here.

The Center for Science and Technology Commercialization (CSTC) is assisting Papadimitrakopoulos in obtaining a patent for the process.

In addition, Xiao-Ming Xu, a graduate student in the Department of Pharmaceutics under the supervision of Professor Diane Burgess, created a computerized animation of the wrapping process that has allowed Papadimitrakopoulos to receive international media attention for the discovery.

The animation can be found at: www.ims.uconn.edu/~papadim/research.htm

This is the second major nanotube discovery at UConn by Papadimitrakopoulos in the past two years. Last year, Papadimitrakopoulos, Sang-Yong Ju, and other UConn researchers patented a way to isolate certain carbon nanotubes from others by using a similar method of wrapping a form of vitamin B2 around the nanotubes.

It was out of that research that Papadimitrakopoulos and Sang-Yong Ju began wrapping nanotubes with helical assemblies and probing their luminescence properties.

####

For more information, please click here

Copyright © University of Connecticut

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project