Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Manufacturing inefficiency

Timothy Gutowski
Photo / Donna Coveney
Timothy Gutowski
Photo / Donna Coveney

Abstract:
Study sees 'alarming' use of energy, materials in newer manufacturing processes

Manufacturing inefficiency

Cambridge, MA | Posted on March 30th, 2009

Modern manufacturing methods are spectacularly inefficient in their use of energy and materials, according to a detailed MIT analysis of the energy use of 20 major manufacturing processes.

Overall, new manufacturing systems are anywhere from 1,000 to one million times bigger consumers of energy, per pound of output, than more traditional industries. In short, pound for pound, making microchips uses up orders of magnitude more energy than making manhole covers.

At first glance, it may seem strange to make comparisons between such widely disparate processes as metal casting and chip making. But Professor Timothy Gutowski of MIT's Department of Mechanical Engineering, who led the analysis, explains that such a broad comparison of energy efficiency is an essential first step toward optimizing these newer manufacturing methods as they gear up for ever-larger production.

"The seemingly extravagant use of materials and energy resources by many newer manufacturing processes is alarming and needs to be addressed alongside claims of improved sustainability from products manufactured by these means," Gutowksi and his colleagues say in their conclusion to the study, which was recently published in the journal Environmental Science and Technology (ES&T).

Gutowksi notes that manufacturers have traditionally been more concerned about factors like price, quality, or cycle time, and not as concerned over how much energy their manufacturing processes use. This latter issue will become more important, however, as the new industries scale up -- especially if energy prices rise again or if a carbon tax is adopted, he says.

Solar panels are a good example. Their production, which uses some of the same manufacturing processes as microchips but on a large scale, is escalating dramatically. The inherent inefficiency of current solar panel manufacturing methods could drastically reduce the technology's lifecycle energy balance -- that is, the ratio of the energy the panel would produce over its useful lifetime to the energy required to manufacture it.

The new study is just "the first step in doing something about it," Gutowski says -- understanding which processes are most inefficient and need further research to develop less energy-intensive alternatives. For example, many of the newer processes involve vapor-phase processing (such as sputtering, in which a material is vaporized in a vacuum chamber so that it deposits a coating on an exposed surface in that chamber), which is usually much less efficient than liquid phase (such as depositing a coating from a liquid solution), but liquid processing alternatives might be developed.

The study covered everything "from soup to nuts" in terms of standard industrial methods, Gutowski says, "from heavy-duty old fashioned industries like a cast-iron foundry, all the way up to semiconductors and nanomaterials." It includes injection molding, sputtering, carbon nanofiber production and dry etching, along with more traditional machining, milling, drilling and melting. There were some boundaries on the processes studied, however: The researchers did not analyze production of pharmaceuticals or petroleum, and they only looked primarily at processes where electricity was the primary energy source.

The figures the team derived are actually conservative, Gutowski says, because they did not include some significant energy costs such as the energy required to make the materials themselves or the energy required to maintain the environment of the plant (such as air conditioning and filtration for clean rooms used in semiconductor processing). "All these things would make [the energy costs] worse," he says.

The bottom line is that "new processes are huge users of materials and energy," he says. Because some of these processes are so new, "they will be optimized and improved over time," he says. But as things stand now, over the last several decades as traditional processes such as machining and casting have increasingly given way to newer ones for the production of semiconductors, MEMS and nano-materials and devices, for a given quantity of output "we have increased our energy and materials consumption by three to six orders of magnitude."

One message from the study is that "claims that these technologies are going to save us in some way need closer scrutiny. There's a significant energy cost involved here," he says. And another is that "each of these processes could be improved," and using the analytical tools developed by the MIT team for this study would be a useful first step in such a detailed analysis.

In addition to Gutowski, the study was done by current and former MIT mechanical engineering students Matthew Branham, Jeffrey Dahmus, Alissa Jones and Alexandre Thiriez, and Dusan Sekulic, professor of mechanical engineering at the University of Kentucky. It was funded by the National Science Foundation.

####

Contacts:
News Office
Room 11-400
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project