Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Revolutionary microchip uses 30 times less power: 'Probabilistic' logic allows computer chip to run faster, use less power

Abstract:
In the first real-world test of a revolutionary type of computing that thrives on random errors, scientists have created a microchip that uses 30 times less electricity while running seven times faster than today's best technology. The U.S.-Singapore team developing the new technology, dubbed PCMOS [pronounced "pee-cee-moss"], revealed its results in San Francisco TODAY at the International Solid-State Circuits Conference (ISSCC), the premier forum for engineers and scientists working at the cutting edge of integrated-circuit design.

Revolutionary microchip uses 30 times less power: 'Probabilistic' logic allows computer chip to run faster, use less power

Houston, TX | Posted on February 8th, 2009

Conceived by Rice University Professor Krishna Palem, PCMOS piggybacks on the "complementary metal-oxide semiconductor" technology, or CMOS, that chipmakers already use. That means chipmakers won't have to buy new equipment to support PCMOS, or "probabilistic" CMOS. Although PCMOS runs on standard silicon, it breaks with computing's past by abandoning the set of mathematical rules -- called Boolean logic -- that have thus far been used in all digital computers. PCMOS instead uses probabilistic logic, a new form of logic developed by Palem and his doctoral student, Lakshmi Chakrapani.

"A significant achievement here is the validation of Rice's probabilistic analogue to Boolean logic using PCMOS," said Shekhar Borkar, an Intel Fellow and director of Intel's Microprocessor Technology Lab. "Coupled with the significant energy and speed advantages that PCMOS offers, this logic will prove extremely important because basic physics dictates that future transistor-based logic will need probabilistic methods."

Silicon transistors become increasingly 'noisy' as they get smaller, but engineers have historically dealt with this by boosting the operating voltage to overpower the noise and ensure accurate calculations. Chips with more and smaller transistors are consequently more power-hungry.

"PCMOS is fundamentally different," Palem said. "We lower the voltage dramatically and deal with the resulting computational errors by embracing the errors and uncertainties through probabilistic logic."

PCMOS was jointly validated by Rice and Nanyang Technological University (NTU) in Singapore via a joint institute that Palem founded in 2007, the Institute for Sustainable Nanoelectronics (ISNE). Directed by Palem, ISNE is based at NTU, where the first prototype PCMOS chips were manufactured last year in collaboration with Professor Yeo Kiat Seng and his team.

The prototypes were application-specific integrated circuits, or ASICs, that were designed solely for encryption. Unlike the general-purpose microprocessors that power PCs and laptops, ASICs are designed for a specific purpose, and they are "embedded" by the millions each year in a growing constellation of products like automobiles, cell phones, MRI scanners and electronic toys.

The Rice-NTU team plans to follow its proof-of-concept work on encryption with proof-of-concept tests on microchips for cell phones, graphics cards and medical implants.

Palem said PCMOS is ideally suited for encryption, a process that relies on generating random numbers. It's equally well-suited for graphics, but for different reasons. In a streaming video application on a cell phone, for example, it is unnecessary to conduct precise calculations. The small screen, combined with the human brain's ability to process less-than-perfect pictures, results in a case where the picture looks just as good with a calculation that's only approximately correct.

"The key is to consider the value that the computed information has for the user," said Palem, who directs Rice's Value of Information-based Sustainable Embedded Nanocomputing Center, or VISEN. "Our goal is green computing. We're looking for applications where PCMOS can deliver as well as or better than existing technology but with a fraction of the energy."

If PCMOS can slash energy use for embedded ASICs in key devices, the implications are enormous. For consumers, it could mean the difference between charging a cell phone every few weeks instead of every few days. Globally, that would help reduce the information technology industry's carbon footprint.

"Based on our findings, we view PCMOS as a path to help IT become more 'green' even as it keeps pace with Moore's Law," said Palem, the Ken and Audrey Kennedy Professor of Computing, professor of computer science, professor of electrical and computer engineering, and professor of statistics.

Palem said he hopes PCMOS technology will enter the embedded computing market in as little as four years.

Palem's PCMOS research was funded by the Defense Advanced Research Projects Agency and Intel Corp.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,001 undergraduates and 2,144 graduate students; selectivity --12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
PHONE: 713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project