Home > Press > Researchers control the assembly of nanobristles into helical clusters
![]() |
Bristles hugging a polystyrene sphere.
Credit: Courtesy of Aizenberg lab at the Harvard School of Engineering and Applied Sciences |
Abstract:
Finding has potential use in energy and information storage, photonics, adhesion, capture and release systems, and chemical mixing
From the structure of DNA to nautical rope to distant spiral galaxies, helical forms are as abundant as they are useful in nature and manufacturing alike. Researchers at the Harvard School of Engineering and Applied Sciences (SEAS) have discovered a way to synthesize and control the formation of nanobristles, akin to tiny hairs, into helical clusters and have further demonstrated the fabrication of such highly ordered clusters, built from similar coiled building blocks, over multiple scales and areas.
The finding has potential use in energy and information storage, photonics, adhesion, capture and release systems, and as an enhancement for the mixing and transport of particles. Lead authors Joanna Aizenberg, Gordon McKay Professor of Materials Science at SEAS and the Susan S. and Kenneth L. Wallach Professor at the Radcliffe Institute for Advanced Study, and L Mahadevan, Lola England de Valpine Professor of Applied Mathematics at SEAS, reported the research in the January 9 issue of Science.
"We demonstrated a fascinating phenomenon: How a nanobristle immersed in an evaporating liquid self-assembles into an ordered array of helical bundles. This is akin to the way wet, curly hair clumps together and coils to form dreadlocks—but on a scale 1000 times smaller," said Aizenberg.
To achieve the "clumping" effect, the scientists used an evaporating liquid on a series of upright individual pillars arrayed like stiff threads on a needlepoint canvas. The resulting capillary forces—the wicking action or the ability of one substance to draw another substance into it—caused the individual strands to deform and to adhere to one another like braided hair, forming nanobristles.
"Our development of a simple theory allowed us to further characterize the combination of geometry and material properties that favor the adhesive, coiled self-organization of bundles and enabled us to quantify the conditions for self-assembly into structures with uniform, periodic patterns," said Mahadevan.
By carefully designing the specific geometry of the bristle, the researchers were able to control the twist direction (or handedness) of the wrapping of two or more strands. More broadly, Aizenberg and Mahadevan, who are both core members of the recently established Wyss Institute for Biologically Inspired Engineering at Harvard, expect such work will help further define the emerging science and engineering of functional self-assembly and pattern formation over large spatial scales.
Potential applications of the technique include the ability to store elastic energy and information embodied in adhesive patterns that can be created at will. This has implications for photonics in a similar way to how the chirally-ordered and circularly-polarizing elytral filaments in a beetle define its unique optical properties.
The finding also represents a critical step towards the development of an efficient adhesive or capture and release system for drug delivery and may be used to induce chiral flow patterns to enhance the mixing and transport of various particles at the micron- and submicron sale.
"We have teased apart and replicated a ubiquitous form in nature by introducing greater control over a technique increasingly used in manufacturing while also creating a micro-physical manifestation of the terrifying braids of the mythical Medusa," said Mahadevan.
"Indeed, our helical patterns are so amazingly aesthetic that often we would stop the scientific discussion and argue about mythology, modern dreadlocks, alien creatures, or sculptures," added Aizenberg.
Aizenberg and Mahadevan's co-authors included Boaz Pokroy and Sung H. Kang, both in the Aizenberg Biomimetics Lab at SEAS. The research was supported by the Wyss Institute for Biologically Inspired Engineering at Harvard; the Harvard Materials Research Science and Engineering Center; and the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network initiative.
Note: High-resolution images available upon request.
####
For more information, please click here
Contacts:
Michael Patrick Rutter
617-496-3815
Copyright © Harvard University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Memory Technology
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |