Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nano "Tractor Beam" Traps DNA: Researchers use beams of light to grab and hold molecules

DNA molecules in a nanoscale channel get trapped by light.
When DNA molecules suspended in a tiny stream of water flow through a nanoscale channel, they can be captured by a field of light if that light is confined in a device called a slot waveguide. The pressure from the light can then propel the DNA along the waveguide channel to bring the molecules to new locations. Such manipulation could prove valuable for assembling nanoscale structures, driving powerful sensors and developing a range of other technologies.

Credit: Nicolle Rager Fuller, National Science Foundation
DNA molecules in a nanoscale channel get trapped by light.
When DNA molecules suspended in a tiny stream of water flow through a nanoscale channel, they can be captured by a field of light if that light is confined in a device called a slot waveguide. The pressure from the light can then propel the DNA along the waveguide channel to bring the molecules to new locations. Such manipulation could prove valuable for assembling nanoscale structures, driving powerful sensors and developing a range of other technologies.

Credit: Nicolle Rager Fuller, National Science Foundation

Abstract:
Using a beam of light shunted through a tiny silicon channel, researchers have created a nanoscale trap that can stop free floating DNA molecules and nanoparticles in their tracks. By holding the nanoscale material steady while the fluid around it flows freely, the trap may allow researchers to boost the accuracy of biological sensors and create a range of new 'lab on a chip' diagnostic tools.

Nano "Tractor Beam" Traps DNA: Researchers use beams of light to grab and hold molecules

Arlington, VA | Posted on January 1st, 2009

The Cornell University research team reports its findings in the Jan. 1, 2009, issue of the journal Nature.

"For this research to emerge in the marketplace in a device such as a 'lab on a chip', it is essential for engineers to be able to manipulate matter at the scale of molecules and atoms, particularly while the matter is contained within a fluid stream only slightly larger than the particles themselves," says William Schultz, the National Science Foundation (NSF) program officer who oversaw the researchers' grant. "NSF and other funding agencies have made nano-science and -technology a high priority. The Cornell researchers have made an important step in realizing the full potential of these devices."

Light has been used to manipulate cells and even nanoscale objects before, but the new technique allows researchers to manipulate the particles more precisely and over longer distances.

"At the nanoscale, we can think of light like a series of massless particles called photons," says Cornell engineer David Erickson, one of the co-authors of the study. "We've demonstrated a way to condense these photons down to a very small area and stream them along a special type of waveguide, a device that acts like a nanoscale optical fiber. When pieces of matter, like DNA or nanoparticles, float near these streaming photons, they are sucked in and pushed along with the flow. The effect is sort of like moving a truck by throwing baseballs at it. The trick is that we found a way to have a large number of highly efficient "collisions" between the photons and the nanoparticles, getting them to stay in our device and keep them moving along it."

Erickson and fellow Cornell engineer Michal Lipson, along with their graduate students Allen Yang, Sean Moore and Bradley Schmidt, and colleagues in Erickson's and Lipson's research groups, crafted a wave guide to shunt light into a narrow beam, laying a trap for the DNA and other small pieces of material.

Each of the tiny channels within the waveguide is only 60-120 nanometers (billionths of a meter) wide, thinner than the 1,500 nanometer wavelength of the infrared laser light channeling through them. The channels keep the light waves focused and enhance their ability to interact with the DNA particles, preventing them from flowing by.

The breakthrough is the use of the slot waveguide, which condenses a light wave's energy to scales as small as the target molecules, overcoming prior limitations caused by light diffraction. Because the waveguide is also a "nanochannel" it can both trap and transport objects using light.

For their experiments, the researchers used water solutions containing either DNA or tiny nanoparticles, washing the fluids over the waveguide microchannels. At a speed of 80 micrometers per second, the system traps less than a fourth of the target particles flowing by, but with smaller channel sizes, slower flows and higher energy lasers, the success rate increases.

"What we're hoping to do now is better understand some of the underlying physics to see what else might be possible with this approach," adds Erickson. "Ultimately we imagine being able to take all the ultrafast and highly efficient optical devices that have been developed for communications and other applications over the last 20 years and apply them to the manipulation of matter in different types of nanosystems. Hopefully in the future we can shuttle around individual strands of DNA the same way we now shuttle around light."

In future iterations of the system, the light will both capture the particles and transport them, so the DNA would arrive at the trap and then be directed to another location, such as a sensor or a staging ground for the assembly of a structure.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Joshua A. Chamot
NSF
(703) 292-7730


Bill Steele
Cornell University
(607) 255-7164


Program Contacts
William Schultz
NSF
(703) 292-4418


Principal Investigators
David Erickson
Cornell University
(607) 255-4861

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View a video of DNA molecules suspended in a stream of water flowing through a nanoscale channel.

The Erickson Laboratory

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project