Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Sweeping Changes Coming With Smart Dust

December 7th, 2008

Sweeping Changes Coming With Smart Dust

Abstract:
Imagine a cloud of sensors, each the size of a grain of sand, blown aloft by hurricane winds and relaying data on the storm to weather stations below. Or picture tiny robotic chips drifting through a human artery to locate, and eradicate, a hidden clot.

While the above advances are likely far off, dozens of companies are working on the basic element for such inventions: smart dust.

Smart dust refers to tiny, wireless networks of sensors. You also could think of the sensors as tiny chips, or even miniature robots. The smart dust detects data about light, temperatures or vibrations and transmits that data to larger computer systems.

Researchers hope to shrink these devices to the size of a speck of dust via nanotechnology — the science of building molecule-size electronic devices. Some scientists see smart dust as quite possibly a game-changing technology.

"Smart dust will be one of the central industries of tomorrow," futurist Alvin Toffler told IBD.

That's the future.

The reality is that after more than a decade of work, smart dust networks haven't reached their promise as a technology that will revolutionize medicine, security, space exploration and more.

At least not yet. Efforts to develop smart dust might be nearing the reality stage. Big outfits such as Emerson Electric (EMR), General Electric (GE) and Cargill are ramping up interest in the technology. Tech firms like Cisco Systems (CSCO) are funding smart dust ventures. IBM (IBM) is tinkering with new smart dust designs.

Source:
investors.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project