Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnetic nanotags allow sensitive detection of cancer biomarkers

 The magnetic nanotag-based protein assay chip has a 200 microliter reaction well and is supported by an 84-pin ceramic base. Embedded in the bottom of the reaction well are 64 sensors in an 8-by-8 array. Credit: Osterfeld et al., PNAS.
The magnetic nanotag-based protein assay chip has a 200 microliter reaction well and is supported by an 84-pin ceramic base. Embedded in the bottom of the reaction well are 64 sensors in an 8-by-8 array. Credit: Osterfeld et al., PNAS.

Abstract:
The detection of cancer-associated proteins, or biomarkers, in blood samples is a potentially powerful tool for early diagnosis of cancer and monitoring of cancer treatment. A team led by researchers at Stanford University and the University of California, Santa Cruz, has developed a compact prototype detector that uses magnetic nanotechnology to spot cancer-associated proteins in a human blood serum sample with much higher sensitivity than current detectors.

Magnetic nanotags allow sensitive detection of cancer biomarkers

Santa Cruz, CA | Posted on December 1st, 2008

The researchers describe their results in a paper published by Proceedings of the National Academy of Sciences (PNAS) the week of December 1, 2008.

In addition to its high sensitivity, the new detector can monitor multiple biomarkers simultaneously. This "multiplex" capability is important because the use of multiple biomarkers is likely to provide greater accuracy and reliability than single biomarkers for cancer diagnosis and other potential applications, said Nader Pourmand, professor of biomolecular engineering at UCSC.

"With current detectors, you can only detect one protein at a time," Pourmand said. "Instead of the standard fluorescent tags, we used nanosized magnetic beads as tags and were able to detect target molecules with tens to hundreds of times greater sensitivity than standard techniques."

"This is essentially a proof-of-concept study showing that now we have a chip and a reader that can find multiple biomarkers in a sample at a concentration much lower than the standard that is commercially available," said Shan Wang, a Stanford professor of materials science and engineering and electrical engineering.

Wang and Pourmand are senior authors of the paper, along with Stanford biochemistry and genetics Professor Ronald W. Davis.

To tag the cancer proteins with magnetic nanoparticles, the detector subjects blood serum samples to an incubation process that takes place in roughly half an hour. At the heart of the detector is a silicon chip designed by the paper's first author, Sebastian Osterfeld, a Stanford materials science and engineering doctoral student. The chips have 64 embedded sensors whose electrical resistance changes in the presence of a nearby magnetic field. Attached to these sensors are capture antibodies that have the unique ability to latch on to specific cancer-related proteins as they float by.

During the incubation process, these antibodies first capture their specific cancer proteins. Next, a second wave of antibodies attach to the specific cancer proteins on one end and magnetic nanoparticles on the other end, tethering the captured cancer biomarkers to magnetic "nanotags." The tags emit a magnetic field that causes a change in the resistance of the underlying sensor, giving the detector a clear signal.

In the PNAS paper, the researchers described detection of very low concentrations of various cancer biomarkers, such as tumor necrosis factor alpha and cancer embryonic antigen. In a multiplex assay involving seven potential cancer biomarkers, concentrations ranging from 5 quadrillionths to 0.1 trillionths of a mole (a standard unit of measurement for molecules) were unambiguously detected simultaneously.

The researchers also estimated that they could detect levels of the protein human chorionic gonadotropin about 400 times lower than the concentration detectable by current commercial kits known by the acronym ELISA, in which captured proteins are conjugated to color-altering or fluorescent labels.

To properly prepare a patient's blood sample for use with the detector, a technician must use a centrifuge to separate out the serum, which contains the biomarkers. For this reason, the device would need to be located in a hospital or a private diagnostic lab, Wang said. Even before that, the device faces clinical utility testing and then must undergo clinical trials to win regulatory approval. To see the device through those steps, Pourmand and Wang have cofounded a startup company, MagArray, in the Panorama Institute for Molecular Medicine, a nonprofit incubator in Sunnyvale, Calif.

Wang said he is optimistic that the technology could someday save lives by detecting cancer early or by helping doctors to select more effective therapy.

"The earlier you can detect a cancer, the better chance you have to kill it," Wang said. "This could be especially helpful for lung cancer, ovarian cancer, and pancreatic cancer, because those cancers are hidden in the body."

The nascent startup has also begun to apply the technology to diagnosis and assessing risk of heart attack in emergency rooms. Heart cell death is also associated with the release of specific biomarker proteins.

The research was funded partly by grants from the U.S. National Institutes of Health, the National Science Foundation, and the Department of Defense. Other authors of the paper include Heng Yu, Richard Gaster, Stefano Caramuta, Liang Xu, Shu-Jen Han, Drew Hall, Robert Wilson, and Robert White, all of Stanford, and Shouheng Sun, of Brown University.

####

For more information, please click here

Contacts:
Pourmand
(831) 502-7315


Tim Stephens
(831) 459-2495

Copyright © UC Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project