Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Spinning into the future of data storage

Abstract:
Scientists from Queen Mary, University of London have improved their understanding of the inner workings of our computers and mp3 players, thanks to an exciting new field of research called 'organic spintronics'.

Dr Alan Drew from Queen Mary's Department of Physics and the University of Freiburg, Switzerland, along with colleagues from the Paul Scherrer Institute (PSI)*, Switzerland, has become the first to measure how the magnetic polarisation is lost in a device similar to a hard drive 'read-head' found in every computer produced in the last ten years.

Spinning into the future of data storage

London, UK | Posted on November 25th, 2008

Computers and mp3 players have become increasingly efficient at information storage thanks to an effect that physicists call 'giant magnetoresistance'; this allows scientists to produce electronic components which are very sensitive to external magnetic fields, known as magnetic read-heads. These read-heads allow magnetically-encoded data to be very densely packed, resulting in very small hard drives which can store more than 100 CDs worth of data in a device the size of half a cigarette box.

Unlike most electronic components, where the electron's intrinsic electric field or charge is used to carry a signal, magnetic read-heads use the electron's intrinsic magnetic field - known as their 'spin' - to carry information. Spinvalves are made up of at least three layers, two magnetic layers separated by a non-magnetic layer. Dr Drew and his team wanted to investigate how spins travel across the middle of these three layers, in the hope of improving future generations of data storage.

His findings contribute significantly to the fundamental understanding of spintronic devices, and will allow new concepts to develop and aid in the discovery of novel devices and applications, as Dr Drew explains: "Spintronics promise low-power circuits, possibly at the quantum level, and the possibility of combining communication, memory and logic on the same chip. The efficient transfer of spin in these devices remains one of the most difficult challenges facing physicists. One way of improving the efficiency of these devices could be to change the materials they are made from, but currently we are unable to predict what effects the different materials will have. Dr Drew's measurements hope to address this.

One particularly exciting part of this research is that a new combination of materials was used to make the device. Dr Drew continues "When devices are made from organic materials, which have low manufacturing costs and are very flexible, the magnetic information can be preserved for extremely long times - over a million times longer than many materials used in today's technology. These new materials have the potential to create an entirely new generation of spin-enabled devices."

Writing in the journal Nature Materials, Dr Drew explains how the researchers used muons, elementary particles that act like tiny magnets, to measure the magnetic field within the device. As Dr Morenzoni from PSI explains, "The muons have a high energy and must be slowed down before they can be used in the experiment and the equipment we used to do this is unique - PSI is the only source of 'slow' muons in the world, and the only equipment that can measure depth resolved magnetism."

In the long-run, experiments such as this will help understand the fundamental operation of spintronics and hard drive read-heads, and will help to show engineers how they can optimise the heads, and improve computer storage, vital to the next generation of technology.

####

For more information, please click here

Contacts:
Sian Halkyard

44 07-970-096-175

Copyright © Queen Mary, University of London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Memory Technology

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project