Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hybrid materials for future solar cells

Transmission electron microscope image of CdSe nanoparticles covering a multi-wall carbon nanotube. (c) Madrimasd
Transmission electron microscope image of CdSe nanoparticles covering a multi-wall carbon nanotube. (c) Madrimasd

Abstract:
The Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA Nanoscience) collaborates together with the University of Hamburg in the development of composite materials based on semiconductor nanoparticles and carbon nanotubes as functional materials for efficient light emitting diodes and photovoltaic devices.

Hybrid materials for future solar cells

Madrid, Spain and Hamburg, Germany | Posted on November 4th, 2008

Semiconductor nanocrystals or also called quantum dots exhibit outstanding optical properties compared to organic dyes. Due to the quantum confinement their emission colour can be continuously tuned from the ultraviolet to the near infrared range by changing the size and chemical composition. They exhibit a broad absorption spectrum, a narrow emission band and large absorption cross sections. Their surface can be covered by a few monolayers of different semiconductor materials in such a way that we can either improve their luminescent properties and stability or avoid the fluorescence to obtain charge carriers. The latter effect opens tremendous alternatives in photovoltaics. Due to their optical properties, semiconductor nanoparticles are studied in different disciplines, from optics to biomedicine.

Thanks to a remarkable effort in the synthetic activities in the last 20 years, we can nowadays produce nanoparticles of different materials controlling their size, shape, and surface properties. Examples of nanoparticles produced by non hydrolytic colloidal synthetic methods are CdS, CdTe, InP, GaAs, PbS, or PbSe. However, the most studied system is CdSe, with tunable emission from blue to red. Due to the synthetic approach (hot injection method), the surface of these nanoparticles is capped with an organic shell that protects them and makes them stable in non-polar organic solvents. It is also possible to controllably replace the initial organic shell for water compatible ones. The organic shell plays a relevant role in the quantum efficiency of the nanoparticles and their stability in different media. However, this shell prevents high electrical conduction.

Carbon nanotubes are another example of nanomaterials with extraordinary electrical properties. They consist of one or several rolled up graphene layers. In the case of a single layer they are called single-wall and multi-wall when several layers are rolled-up. Hybrid materials composed of semiconductor nanoparticles and carbon nanotubes combine the high absorption properties of the former and the high electrical conductivity of the latter. One of the main drawbacks in the formation of such hybrid structures focuses on the type of interaction between them. Most of the existing procedures involve the growth of nanoparticles on previous defect sites provoked on the surface or edges of carbon nanotubes by aggressive chemical means. These aggressive treatments render an oxidised nanotube surface or even structural damage that deteriorates their outstanding electrical, mechanical, and optical properties significantly. Thus, supramolecular or electrostatic functionalisations are better approaches for photovoltaic applications.

Dr Beatriz H. Juarez, from IMDEA Nanoscience, works on the preparation of hybrid materials with high coverage without modifying the electrical properties of the tubes. Furthermore, the monodispersity of the nanoparticles with high crystallographic quality and a close contact between nanoparticles and nanotubes are also under investigation. The composites show photoelectrical response, injecting charge carriers in the nanotubes upon nanoparticle excitation. Although in an initial stage, the results obtained up to now points out the high potential of these composites to build up photovoltaic devices and solar cells.

####

For more information, please click here

Copyright © Instituto Madrileno de Estudios Avanzados en Nanociencia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project