Home > Press > Scientists form alliance to develop nanotoxicology protocols: International group addresses lack of consensus on test procedures
Abstract:
A team of materials scientists and toxicologists announced the formation of a new international research alliance to establish protocols for reproducible toxicological testing of nanomaterials in both cultured cells and animals. The International Alliance for NanoEHS Harmonization (IANH) was unveiled today at Nanotox 2008, one of the world's largest biennial nanotoxicological research meetings.
"When this team of scientists from Europe, the U.S., and Japan are able to get the same results for interactions of nanomaterials with biological organisms, then science and society can have higher confidence in the safety of these materials," said Kenneth Dawson, of University College Dublin and current chair of the IANH team.
Nanotechnology provides the opportunity for enabling new products that could meet a wide range of societal needs, but concerns over potential environmental, health and safety impacts of these materials may limit their adoption. Multiple organizations including the Organization for Economic Co-operation and Development (OECD) and the International Nanotechnology Conference for Communication and Cooperation (INC) have highlighted the importance of international collaboration to accelerate understanding of nanotechnology implications for society. This alliance, IANH, was established by leading materials and toxicological researchers to address this need.
Although Andrew Maynard, a leading scientist in this area, is not a member of this alliance, he sees the need for this effort. "This initiative is a major step toward ensuring hazard evaluations of emerging nanomaterials that are both relevant and reproducible," said Andrew Maynard, Chief Scientist, Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars in Washington, D.C.
The IANH team includes researchers from Germany: Wolfgang Kreyling of Helmholtz Institute; from Ireland: Kenneth Dawson of University College Dublin; from Japan: Gaku Ichihara of Nagoya University, and Kun'ichi Miyazawa of the National Institute for Materials Science; from Switzerland: Harald Krug of the Swiss Federal Laboratories for Materials Testing and Research (EMPA); from the United Kingdom: Vicki Stone of Napier University; from the United States of America: Vince Castranova, Mark Hoover, Dale Porter, and Aleksandr Stefaniak of the National Institute for Occupational Safety and Health at the Centers for Disease Control and Prevention; Vicki Colvin of Rice University; Fred Klaessig; Andre' Nel of the University of California at Los Angeles; Günter Oberdörster and Alison Elder of the University of Rochester; and Mark Wiesner of Duke University.
Others collaborating with this alliance include from the European Union Joint Research Centre: Gert Roebben and Hendrik Emons of the Institute for Reference Materials and Measurements. From the United States of America, Vince Hackley of the National Institute of Standards and Technology; and Scott McNeil of the Nanotechnology Characterization Laboratory at the National Cancer Institute are also collaborating with the alliance.
Previous studies have identified key gaps in scientific knowledge regarding the biological interactions with nanoparticles and subsequent toxicological responses. Progress in resolving these issues is limited by the lack of testing protocols that enable reproducible assessment of the biological interactions of nanoparticles with cells and animals, and the lack of correlations between interactions observed in cells and in animals. IANH is being formed to establish testing protocols that enable reproducible toxicological testing of nanomaterials at the cell and animal levels and to start developing correlations between these two systems.
IANH members have agreed to develop specific tools and testing protocols and to perform a set of round robin experiments to lay the foundation for reproducible testing of nanomaterial biological interactions and toxicology. The alliance will establish protocols that can be shared with other researchers and foster experiments to evaluate correlations between in vitro testing and toxicological interactions in mammals and aquatic animals. These reproducible nano-biological testing protocols should enable better assessment of potential biological interactions of nanomaterials and improve correlations between in vitro testing and outcomes in animals, humans and the environment.
This effort was encouraged by the United States National Science Foundation, National Institutes of Health, the National Institute for Occupational Safety and Health, the National Institute of Standards and Technology, the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (FP7), and the Japanese National Institute for Materials Science.
####
For more information, please click here
Contacts:
Vicki Colvin
713-348-5741
Europe: Iseult Lynch
Tel. +353 87 252 0073
Andre' Nel
Tel. 1 310-825-6620
Günter Oberdörster
Tel. 1 585 275 3804
Mark Wiesner
Tel. 1 919 660 5292
Japan & Asia:
Masahiro Takemura
Tel. +81 (29) 859-2402
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||