Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > nGimat Awarded US Department of Energy Phase I to Develop Electrode Nanomaterials for Lithium-ion Batteries

Abstract:
The US Department of Energy (DOE) has awarded nGimat a Small Business Innovation Research (SBIR) Phase I to develop electrode nanomaterials for high-performance Lithium-ion batteries that will be used to power the next generation of hybrid-electric vehicles (HEV). In the award notification the DOE stated "this project will develop a critical component of Lithium-ion batteries that will power next generation Hybrid Electric Vehicles. Automobiles powered by batteries containing this component will reduce our dependence on foreign oil, [reduce] pollution caused by harmful automobile emissions, and strengthen global competitiveness of the U.S. automobile industry".

nGimat Awarded US Department of Energy Phase I to Develop Electrode Nanomaterials for Lithium-ion Batteries

Atlanta, GA | Posted on July 15th, 2008

To this end, nGimat will use its proprietary NanoSpray CombustionTM process to develop nanomaterials that are expected to have significantly higher power-density than conventional Lithium-ion batteries and significantly higher energy-density than conventional Nickel-Metal Hydride batteries that are currently in use in HEVs. The NanoSpray Combustion process has been widely used to develop a variety of metal-oxide and metal-phosphate nanomaterials and nGimat will now extend the process in a cost effective manner to develop high-performance electrode nanomaterials for the next generation of Lithium-ion batteries.

In the Phase I effort, nGimat will develop a family of metal-oxide based anode materials that will be optimized for power density. The performance of these materials will be demonstrated in prototype batteries. Potential Phase II and Phase III programs would focus on scaling up production of the nanomaterials, developing larger Lithium-ion batteries and developing strategic alliances with our customer industry partners.

Through its core technology of NanoSpray Combustion Processing, nGimat is a cost-effective manufacturer and innovator of nanoEngineered MaterialsSM in the following areas: nanopowders, thin films and devices. The Company currently has a portfolio of 46 U.S. patents, 71 non-U.S. patents, and is processing about 65 patent applications.

####

About nGimat
nGimat Co. is a leading nanoengineered materials provider of customized and affordable solutions to critical business needs. By working closely with customers to define their needs, nGimat can create never before attained product enhancements through the unique performance of its nanomaterials. As an intellectual property company, nGimat manufactures engineered nanomaterials in the following areas: nanopowders, thin film coatings, and devices. nGimat's NanoSpraySM Combustion Process technology enables synthesis of thin films and nanoparticles. These processes are easily scalable and amenable to mass manufacturing, thereby enabling low-cost production of engineering materials with controlled composition, size, and morphology.

For more information, please click here

Contacts:
nGimat Co.
5315 Peachtree Industrial Blvd.
Atlanta, GA 30341
678-287-2400

Copyright © nGimat

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Automotive/Transportation

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project