Home > Press > nGimat Awarded US Department of Energy Phase I to Develop Electrode Nanomaterials for Lithium-ion Batteries
Abstract:
The US Department of Energy (DOE) has awarded nGimat a Small Business Innovation Research (SBIR) Phase I to develop electrode nanomaterials for high-performance Lithium-ion batteries that will be used to power the next generation of hybrid-electric vehicles (HEV). In the award notification the DOE stated "this project will develop a critical component of Lithium-ion batteries that will power next generation Hybrid Electric Vehicles. Automobiles powered by batteries containing this component will reduce our dependence on foreign oil, [reduce] pollution caused by harmful automobile emissions, and strengthen global competitiveness of the U.S. automobile industry".
To this end, nGimat will use its proprietary NanoSpray CombustionTM process to develop nanomaterials that are expected to have significantly higher power-density than conventional Lithium-ion batteries and significantly higher energy-density than conventional Nickel-Metal Hydride batteries that are currently in use in HEVs. The NanoSpray Combustion process has been widely used to develop a variety of metal-oxide and metal-phosphate nanomaterials and nGimat will now extend the process in a cost effective manner to develop high-performance electrode nanomaterials for the next generation of Lithium-ion batteries.
In the Phase I effort, nGimat will develop a family of metal-oxide based anode materials that will be optimized for power density. The performance of these materials will be demonstrated in prototype batteries. Potential Phase II and Phase III programs would focus on scaling up production of the nanomaterials, developing larger Lithium-ion batteries and developing strategic alliances with our customer industry partners.
Through its core technology of NanoSpray Combustion Processing, nGimat is a cost-effective manufacturer and innovator of nanoEngineered MaterialsSM in the following areas: nanopowders, thin films and devices. The Company currently has a portfolio of 46 U.S. patents, 71 non-U.S. patents, and is processing about 65 patent applications.
####
About nGimat
nGimat Co. is a leading nanoengineered materials provider of customized and affordable solutions to critical business needs. By working closely with customers to define their needs, nGimat can create never before attained product enhancements through the unique performance of its nanomaterials. As an intellectual property company, nGimat manufactures engineered nanomaterials in the following areas: nanopowders, thin film coatings, and devices. nGimat's NanoSpraySM Combustion Process technology enables synthesis of thin films and nanoparticles. These processes are easily scalable and amenable to mass manufacturing, thereby enabling low-cost production of engineering materials with controlled composition, size, and morphology.
For more information, please click here
Contacts:
nGimat Co.
5315 Peachtree Industrial Blvd.
Atlanta, GA 30341
678-287-2400
Copyright © nGimat
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Leading the charge to better batteries February 28th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |