Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Holey Nanoparticles Create New Tumor Imaging and Therapeutic Agent

Abstract:
Using a polymer that has both water-soluble and water-insoluble regions, a team of investigators from the Siteman Center of Cancer Nanotechnology Excellence has created a nanoparticle shaped like a bialy, a close relative of the bagel. Combining this nanoparticle with manganese, a metal that boosts magnetic resonance imaging signals, and an antibody that targets blood vessels, the investigators then created a new type of imaging agent that also has the potential to deliver drugs to tumors.

Holey Nanoparticles Create New Tumor Imaging and Therapeutic Agent

Bethesda , MD | Posted on July 9th, 2008

Gregory Lanza, M.D., and Samuel Wickline, M.D., both at Washington University of St. Louis, led the research team that set out to create a magnetic resonance imaging (MRI) contrast agent based on manganese rather than gadolinium, which is widely used today in a variety of medical imaging applications. Recent reports showing that gadolinium-based contrast agents can produce irreversible kidney damage in some patients have prompted the imaging community to search for equally effective but safer contrast agents. Manganese may fit this bill, but only with a means of delivering it to targeted tissues.

Nanobialys that self-assemble from the polymer poly(ethyleneimine) appear to have promise as such a delivery agent. The bialy shape, also known as a torus, has a large surface area exposed to water, a key for manganese to function as an effective MRI contrast agent. When the bialys form in the presence of manganese, the metal becomes incorporated stably in the nanostructure. Once formed, the investigators were able to add vascular targeting molecules using a mild chemical coupling reaction to the nanobialy polymer.

Using a targeting agent that binds to fibrin, a major component of clots that form in blood vessels, the investigators were able to image clots using MRI in an in vitroassay system. The investigators were also able to load the nanobialys with two different anticancer agents—doxorubicin, which is water soluble, and camptothecin, which is water insoluble. The researchers plan further tests with these drug-loaded, targeted nanobialys.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580


Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View PubMed citation - “Ligand-Directed Nanobialys as Theranostic Agent for Drug Delivery and Manganese-Based Magnetic Resonance Imaging of Vascular Targets.”

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project