Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticle Delivers Antisense Agent to Tumors, Boosts Drug Effect in Resistant Tumors

Abstract:
A multifunctional drug delivery system consisting of a lipid-based nanoparticle, a standard anticancer drug, and a short nucleic acid designed to augment the activity of that drug has demonstrated the ability to treat drug-resistant tumor cells. This work, published in the journal Clinical Cancer Research, suggests a novel approach to treating drug-resistant tumors, the leading cause of cancer deaths.

Nanoparticle Delivers Antisense Agent to Tumors, Boosts Drug Effect in Resistant Tumors

Bethesda , MD | Posted on June 16th, 2008

Tamara Minko, Ph.D., of Rutgers University, led the team of investigators that developed this novel nanotherapeutic system for treating cancer. She and her colleagues set out to target a signaling pathway that causes tumors to trigger new blood vessel growth and to develop resistance to many anticancer drugs. To shut down this pathway, the investigators developed an antisense oligonucleotide that would bind to and inactivate messenger RNA coding for a protein known as hypoxia-inducible factor-1α, which, when present, activates the targeted pathway.

To deliver this antisense agent to tumor cells, the investigators created a lipid-based nanoparticle, or liposome, that would stably incorporate both the antisense agent and the anticancer drug doxorubicin. The investigators also created two additional liposomes as controls, each of which was loaded with only one of the two therapeutic agents. Tests with both isolated tumor cells and with animals bearing human tumors showed that administration of the multifunctional nanoparticle was more effective at killing tumor cells than was coadministration of the two single-component liposomes. At the same time, the multifunctional liposome produced fewer side effects than did the combination of the two single-component liposomes. The investigators hypothesized that cells may have a limited ability to take up liposomes, so including both drugs in a single liposome would increase cellular uptake of the active ingredients relative to when these agents are delivered using two separate liposomes.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:


National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Nonviral Nanoscale-Based Delivery of Antisense Oligonucleotides Targeted to Hypoxia-Inducible Factor 1α Enhances the Efficacy of Chemotherapy in Drug-Resistant Tumor.”

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project